12 resultados para light weight design
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Organic field-effect transistors (OFETs) are becoming interesting owing to their prospective application as cheap, bendable and light weight electronic devices rnlike flexible displays. However, the bottleneck of OFETs is their typically low charge carrier mobilities. An effective and crucial route towards circumventing thisrnhurdle is the control of organic semiconductor thin film morphology which critically determine charge carrier transport. In this work, the influence of film morphologyrnis highlighted together with its impact on OFET transistor performance.
Resumo:
Small, smaller, nano - it is a milestone in the development of new materials and technologies. Nanoscience is now present in our daily lives: in the car industry with self-cleaning surfaces, in medicine with cancer therapies, even our clothes and cosmetics utilize nanoparticles. The number and variety of applications has been growing fast in recent years, and the possibilities seem almost infinite. Nanoparticles made of inorganic materials have found applications in new electronic technologies, and organic nanomaterials have been added to resins to produce very strong but light weight materials.rnThis work deals with the combination of organic and inorganic materials for the fabrication of new, functional hybrid systems. For that purpose, block copolymers were made with a long, solubility-enhancing and semiconducting block, and a short anchor block. They were synthesized by either RAFT polymerization or Siegrist polycondensation. For the second block, an active ester was grafted on and subsequently reacted with the anchor molecules in a polymer analogue reaction. The resulting block copolymers had different properties; poly(para-phenylene vinylene) showed self-assembly in organic solvents, which resulted in gelling of the solution. The fibers from a diluted solution were visible through microscopy. When polymer chains were attached to TiO2 nanorods, the hybrids could be integrated into polymer fibers. A light-induced charge separation was demonstrated through KPFM. The polymer charged positively and the charge could travel along the fibers for several hundred nanometers. Polymers made via RAFT polymerization were based on poly(vinyltriphenylamine). Ruthenium chromophores which carried anchor groups were attached to the second block. These novel block copolymers were then attached to ZnO nanorods. A light-induced charge separation was also demonstrated in this system. The ability to disperse inorganic nanoparticles within the film is another advantage of these block copolymers. This was shown with the example of CdSe tetrapods. Poly(vinyltriphenylamine dimer) with disulfide anchor groups was attached to CdSe tetrapods. These four-armed nanoparticles are supposed to show very high charge transport. A polymer without anchor groups was also mixed with the tetrapods in order to investigate the influence of the anchor groups. It was shown that without them no good films were formed and the tetrapods aggregated heavily in the samples. Additionally, a large difference in the film qualities and the aggregation of the tetrapods was found in the sample of the polymer with anchor groups, dependent on the tetrapod arm length and the polymer loading. These systems are very interesting for hybrid solar cells. This work also illustrates similar systems with quantum dots. The influence of the energy level of the polymer on the hole transport from the polymer to the quantum dots, as well as on the efficiency of QLEDs was studied. For this purpose two different polymers were synthesized with different HOMO levels. It was clearly shown that the polymer with the adjusted lower HOMO level had a better hole injection to the quantum dots, which resulted in more efficient light emitting diodes.rnThese systems all have in common the fact that novel, and specially designed polymers, were attached to inorganic nanocrystals. All of these hybrid materials show fascinating properties, and are helpful in the research of new materials for optoelectronic applications.
Resumo:
Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn
Resumo:
A sample scanning confocal optical microscope (SCOM) was designed and constructed in order to perform local measurements of fluorescence, light scattering and Raman scattering. This instrument allows to measure time resolved fluorescence, Raman scattering and light scattering from the same diffraction limited spot. Fluorescence from single molecules and light scattering from metallic nanoparticles can be studied. First, the electric field distribution in the focus of the SCOM was modelled. This enables the design of illumination modes for different purposes, such as the determination of the three-dimensional orientation of single chromophores. Second, a method for the calculation of the de-excitation rates of a chromophore was presented. This permits to compare different detection schemes and experimental geometries in order to optimize the collection of fluorescence photons. Both methods were combined to calculate the SCOM fluorescence signal of a chromophore in a general layered system. The fluorescence excitation and emission of single molecules through a thin gold film was investigated experimentally and modelled. It was demonstrated that, due to the mediation of surface plasmons, single molecule fluorescence near a thin gold film can be excited and detected with an epi-illumination scheme through the film. Single molecule fluorescence as close as 15nm to the gold film was studied in this manner. The fluorescence dynamics (fluorescence blinking and excited state lifetime) of single molecules was studied in the presence and in the absence of a nearby gold film in order to investigate the influence of the metal on the electronic transition rates. The trace-histogram and the autocorrelation methods for the analysis of single molecule fluorescence blinking were presented and compared via the analysis of Monte-Carlo simulated data. The nearby gold influences the total decay rate in agreement to theory. The gold presence produced no influence on the ISC rate from the excited state to the triplet but increased by a factor of 2 the transition rate from the triplet to the singlet ground state. The photoluminescence blinking of Zn0.42Cd0.58Se QDs on glass and ITO substrates was investigated experimentally as a function of the excitation power (P) and modelled via Monte-Carlo simulations. At low P, it was observed that the probability of a certain on- or off-time follows a negative power-law with exponent near to 1.6. As P increased, the on-time fraction reduced on both substrates whereas the off-times did not change. A weak residual memory effect between consecutive on-times and consecutive off-times was observed but not between an on-time and the adjacent off-time. All of this suggests the presence of two independent mechanisms governing the lifetimes of the on- and off-states. The simulated data showed Poisson-distributed off- and on-intensities, demonstrating that the observed non-Poissonian on-intensity distribution of the QDs is not a product of the underlying power-law probability and that the blinking of QDs occurs between a non-emitting off-state and a distribution of emitting on-states with different intensities. All the experimentally observed photo-induced effects could be accounted for by introducing a characteristic lifetime tPI of the on-state in the simulations. The QDs on glass presented a tPI proportional to P-1 suggesting the presence of a one-photon process. Light scattering images and spectra of colloidal and C-shaped gold nano-particles were acquired. The minimum size of a metallic scatterer detectable with the SCOM lies around 20 nm.
Resumo:
Stilbenoid dendrimers with stilbene in the periphery and stilbene in periphery as well as core were synthesized by convergent approach except 2nd generation dendrimer with stilbene in the periphery as well as in core (D-5). All dendrimers were characterized by standard techniques such as 1H NMR, 13C NMR, MS and IR spectroscopy. The MALDI-TOF technique proved to be very helpful in the identification of the 2nd generation dendrimer (D-5) with a mass of 3231 a.m.u. The dendrimers were designed in such a way that an intramolecular photochemical CC bond formation was favored. As two stilbene units of the same molecule were close enough so they preferred an intramolecular cyclic process except for zero generation dendrimers. Apart from the cycloaddition, some E/Z isomerization and oligomer formation was also observed on irradiation. These processes were observed by 1H NMR and MALDI-TOF MS. The photochemical behavior was also studied by UV absorption spectroscopy. Irradiating by monochromatic light led to an initial E/Z isomerization and by prolonged irradiation, an irreversible cyclic structure was formed. The choice of the wavelength of incident light is very important as irradiation at 320 nm leads to a reversible E/Z isomerization and a non-reversible cyclobutane formation, but irradiation at 340 nm favors the one-way process E Z. The [2+2] cycloaddition of molecule Tm2De was also studied by irradiating thin films on a quartz surface. An AFM image was taken before irradiation, after 3 sec irradiation and after long irradiation (1 hour). AFM studies show that a short irradiation leads to a cyclic structure as formation of hills of about 20-30 nm on the surface. A prolonged irradiation leads to a CC cross linking which can be monitored on AFM images as disappearance of hills. The roughness goes back to an almost smooth surface. These results prove a very complex material transport, which accompanies the reaction in the surface region.
Resumo:
Die DNA stellt aufgrund der genetischen Krankheitsursache nach wie vor ein überaus attraktives Target für das Design antitumoraktiver Zytostatika dar. Ein wesentlicher Schwerpunkt der heutigen Forschung besteht vor allem in der Entwicklung niedermolekularer, sequenzspezifischer DNA-Liganden zur gezielten Ausschaltung defekter Gene. Im Rahmen dieser Arbeit erfolgte daher in Anlehnung an die antitumoral wirksame Leitsubstanz Netropsin - ein AT-selektiver Minor Groove Binder mit Bispyrrolcarboxamid-Grundstruktur - erstmals der systematische Aufbau einer neuen Serie bioisosterer Hybridmoleküle, bestehend aus einem interkalierenden Strukturelement (Acridon, Naphthalimid, 5-Nitronaphthalimid, Anthrachinon, 11H-Pyrido[2,3-a]carbazol) und Thiophenpyrrol-, Imidazolpyrrol-, Thiazolpyrrol- bzw. Bisimidazolcarboxamid als rinnenbindende Oligoamid-Einheit (sog. Combilexine). Die chromophoren Systeme am N-Terminus wurden hierbei über aliphatische Linker variabler Kettenlänge mit der Carboxamid-Kette verknüpft. Als C-terminale Funktion kam sowohl die N,N-Dimethyl-1,3-diaminopropan- als auch die um ein C-Atom kürzere Dimethylaminoethylamin-Seitenkette zum Einsatz. Unter Verwendung modernster Reagenzien aus der Peptidkupplungschemie ist es gelungen, ein präparativ gut zugängliches, reproduzierbares Verfahren zur Synthese dieser bioisosteren Combilexine zu entwickeln. Anhand biophysikalischer/biochemischer, zellbiologischer und physikochemischer (1H-NMR-spektroskopischer und röntgenstrukturanalytischer) Methoden sowie Molecular Modelling Studien wurden erstmals bezüglich der DNA-Bindung, der Topoisomerase-Hemmung und der Antitumor-Zellzytotoxizität in einem breiten Rahmen vororientierende Struktur-Wirkungsbeziehungen an bioisosteren Liganden erstellt. Wenngleich zwischen den in vitro und in silico ermittelten Befunden keine konkreten Gesetzmäßigkeiten zu erkennen waren, so ließ die Summation der Ergebnisse dennoch darauf schließen, dass es sich bei den Naphthalimidpropion- und Acridonbuttersäure-Derivaten mit C-terminaler Propylendiamin-Funktion um die aussichtsreichsten Kandidaten in Bezug auf die DNA-Affinität bzw. Zytotoxizität handelte.
Resumo:
In der vorliegenden Arbeit wurden Struktur-Eigenschaftsbeziehungen des konjugierten Modell-Polymers MEH-PPV untersucht. Dazu wurde Fällungs-fraktionierung eingesetzt, um MEH-PPV mit unterschiedlichem Molekulargewicht (Mw) zu erhalten, insbesondere MEH-PPV mit niedrigem Mw, da dieses für optische Wellenleiterbauelemente optimal geeignet ist Wir konnten feststellen, dass die Präparation einer ausreichenden Menge von MEH-PPV mit niedrigem Mw und geringer Mw-Verteilung wesentlich von der geeigneten Wahl des Lösungsmittels und der Temperatur während der Zugabe des Fällungsmittels abhängt. Alternativ dazu wurden UV-induzierte Kettenspaltungseffekte untersucht. Wir folgern aus dem Vergleich beider Vorgehensweisen, dass die Fällungsfraktionierung verglichen mit der UV-Behandlung besser geeignet ist zur Herstellung von MEH-PPV mit spezifischem Mw, da das UV-Licht Kettendefekte längs des Polymerrückgrats erzeugt. 1H NMR and FTIR Spektroskopie wurden zur Untersuchung dieser Kettendefekte herangezogen. Wir konnten außerdem beobachten, dass die Wellenlängen der Absorptionsmaxima der MEH-PPV Fraktionen mit der Kettenlänge zunehmen bis die Zahl der Wiederholeinheiten n 110 erreicht ist. Dieser Wert ist signifikant größer als früher berichtet. rnOptische Eigenschaften von MEH-PPV Wellenleitern wurden untersucht und es konnte gezeigt werden, dass sich die optischen Konstanten ausgezeichnet reproduzieren lassen. Wir haben die Einflüsse der Lösungsmittel und Temperatur beim Spincoaten auf Schichtdicke, Oberflächenrauigkeit, Brechungsindex, Doppelbrechung und Wellenleiter-Dämpfungsverlust untersucht. Wir fanden, dass mit der Erhöhung der Siedetemperatur der Lösungsmittel die Schichtdicke und die Rauigkeit kleiner werden, während Brechungsindex, Doppelbrechung sowie Wellenleiter-Dämpfungsverluste zunahmen. Wir schließen daraus, dass hohe Siedetemperaturen der Lösungsmittel niedrige Verdampfungsraten erzeugen, was die Aggregatbildung während des Spincoatings begünstigt. Hingegen bewirkt eine erhöhte Temperatur während der Schichtpräparation eine Erhöhung von Schichtdicke und Rauhigkeit. Jedoch nehmen Brechungsindex und der Doppelbrechung dabei ab.rn Für die Schichtpräparation auf Glassubstraten und Quarzglas-Fasern kam das Dip-Coating Verfahren zum Einsatz. Die Schichtdicke der Filme hängt ab von Konzentration der Lösung, Transfergeschwindigkeit und Immersionszeit. Mit Tauchbeschichtung haben wir Schichten von MEH-PPV auf Flaschen-Mikroresonatoren aufgebracht zur Untersuchung von rein-optischen Schaltprozessen. Dieses Verfahren erweist sich insbesondere für MEH-PPV mit niedrigem Mw als vielversprechend für die rein-optische Signalverarbeitung mit großer Bandbreite.rn Zusätzlich wurde auch die Morphologie dünner Schichten aus anderen PPV-Derivaten mit Hilfe von FTIR Spektroskopie untersucht. Wir konnten herausfinden, dass der Alkyl-Substitutionsgrad einen starken Einfluss auf die mittlere Orientierung der Polymerrückgrate in dünnen Filmen hat.rn
Resumo:
Der Fokus dieser Arbeit liegt in dem Design, der Synthese und der Charakterisierung neuartiger photosensitiver Mikrogele und Nanopartikel als potentielle Materialien für Beladungs- und Freisetzungsanwendungen. Zur Realisierung dieses Konzepts wurden verschiedene Ansätze untersucht.Es wurden neuartige niedermolekulare lichtspaltbare Vernetzermoleküle auf der Basis von o-Nitrobenzylderivaten synthetisiert, charakterisiert und zur Herstellung von photosensitiven PMMA und PHEMA Mikrogelen verwendet. Diese sind unter Bestrahlung in organischen Lösungsmitteln quellbar und zersetzbar. Durch die Einführung anionischer MAA Gruppen in solche PHEMA Mikrogele wurde dieses Konzept auf doppelt stimuliresponsive p(HEMA-co-MAA) Mikrogele erweitert. Hierbei wurde ein pH-abhängiges Quellbarkeitsprofil mit der lichtinduzierten Netzwerkspaltung in wässrigen Medien kombiniert. Diese duale Sensitivität zu zwei zueinander orthogonalen Reizen stellt ein vielversprechendes Konzept zur Kombination einer pH-abhängigen Beladung mit einer lichtinduzierten Freisetzung von funktionellen Substanzen dar. Desweiteren wurden PAAm Mikrogele entwickelt, welche sowohl eine Sensitivität gegenüber Enzymen als auch Licht aufweisen. Dieses Verhalten wurde durch die Verwendung von (meth-)acrylatfunktionalisierten Dextranen als polymere Vernetzungsmoleküle erreicht. Das entsprechende stimuliresponsive Profil basiert auf der enzymatischen Zersetzbarkeit der Polysaccharid-Hauptkette und der Anbindung der polymerisierbaren Vinyleinheiten an diese über photospaltbare Gruppen. Die gute Wasserlöslichkeit der Vernetzermoleküle stellt einen vielversprechenden Ansatz zur Beladung solcher Mikrogele mit funktionellen hydrophilen Substanzen bereits während der Partikelsynthese dar. Ein weiteres Konzept zur Beladung von Mikrogelen basiert auf der Verwendung von photolabilen Wirkstoff-Mikrogel Konjugaten. In einem ersten Schritt zur Realisierung solch eines Ansatzes wurde ein neuartiges Monomer entwickelt. Hierbei wurde Doxorubicin über eine lichtspaltbare Gruppe an eine polymerisierbare Methacrylatgruppe angebunden. Für die Freisetzung hydrophober Substanzen in wässrigen Medien wurden polymere Photolack-Nanopartikel entwickelt, welche sich unter Bestrahlung in Wasser zersetzen. Die lichtinduzierte Änderung der Hydrophobizität des Polymers ermöglichte die Freisetzung von Nilrot durch das Auflösen der partikulären Struktur. Ein interessanter Ansatz zur Verhinderung einer unkontrollierten Freisetzung funktioneller Substanzen aus Mikrogelen ist die Einführung einer stimuliresponsiven Schale. In diesem Kontext wurden Untersuchungen zur Bildung von nicht-stimulisensitiven Schalen um vorgefertigte Mikrogelkerne und zur Synthese von Hydrogelkernen in vorgefertigten polymeren Schalen (Nanokapseln) durchgeführt.
Resumo:
Synthetic Routes toward Functional Block Copolymers and Bioconjugates via RAFT PolymerizationrnSynthesewege für funktionelle Blockcopolymere und Biohybride über RAFT PolymerisationrnDissertation von Dipl.-Chem. Kerstin T. WissrnIm Rahmen dieser Arbeit wurden effiziente Methoden für die Funktionalisierung beider Polymerkettenenden für Polymer- und Bioanbindung von Polymeren entwickelt, die mittels „Reversible Addition-Fragmentation Chain Transfer“ (RAFT) Polymerisation hergestellt wurden. Zu diesem Zweck wurde ein Dithioester-basiertes Kettentransferagens (CTA) mit einer Aktivestereinheit in der R-Gruppe (Pentafluorphenyl-4-phenylthiocarbonylthio-4-cyanovaleriansäureester, kurz PFP-CTA) synthetisiert und seine Anwendung als universelles Werkzeug für die Funktionalisierung der -Endgruppe demonstriert. Zum Einen wurde gezeigt, wie dieser PFP-CTA als Vorläufer für die Synthese anderer funktioneller CTAs durch einfache Aminolyse des Aktivesters genutzt werden kann und somit den synthetischen Aufwand, der üblicherweise mit der Entwicklung neuer CTAs verbunden ist, reduzieren kann. Zum Anderen konnte der PFP-CTA für die Synthese verschiedener Poly(methacrylate) mit enger Molekulargewichtsverteilung und wohl definierter reaktiver -Endgruppe verwendet werden. Dieses Kettenende konnte dann erfolgreich mit verschiedenen primären Aminen wie Propargylamin, 1-Azido-3-aminopropan und Ethylendiamin oder direkt mit den Amin-Endgruppen verschiedener Peptide umgesetzt werden.rnAus der Reaktion des PFP-CTAs mit Propargylamin wurde ein Alkin-CTA erhalten, der sich als effizientes Werkzeug für die RAFT Polymerisation verschiedener Methacrylate erwiesen hat. Der Einbau der Alkin-Funktion am -Kettenende wurde mittels 1H und 13C NMR Spektroskopie sowie MALDI TOF Massenspektroskopie bestätigt. Als Modelreaktion wurde die Kopplung eines solchen alkin-terminierten Poly(di(ethylenglykol)methylethermethacrylates) (PDEGMEMA) mit azid-terminiertem Poly(tert-butylmethacrylat), das mittels Umsetzung einer Aktivester-Endgruppe erhalten wurde, als kupferkatalysierte Azid-Alkin-Cycloaddition (CuAAC) durchgeführt. Die Aufarbeitung des resultierenden Diblockcopolymers durch Fällen ermöglichte die vollständige Abtrennung des Polymerblocks 1, der im Überschuss eingesetzt wurde. Darüber hinaus blieb nur ein sehr kleiner Anteil (< 2 Gew.-%) nicht umgesetzten Polymerblocks 2, was eine erfolgreiche Polymeranbindung und die Effizienz der Endgruppen-Funktionalisierung ausgehend von der Aktivester--Endgruppe belegt.rnDie direkte Reaktion von stimuli-responsiven Polymeren mit Pentafluorphenyl(PFP)ester-Endgruppen, namentlich PDEGMEMA und Poly(oligo(ethylenglykol)methylethermethacrylat), mit kollagen-ähnlichen Peptiden ergab wohl definierte Polymer-Peptid-Diblockcopolymere und Polymer-Peptid-Polymer-Triblockcopolymer unter nahezu quantitativer Umsetzung der Endgruppen. Alle Produkte konnten vollständig von nicht umgesetztem Überschuss des Homopolymers befreit werden. In Analogie zu natürlichem Kollagen und dem nicht funktionalisierten kollagen-ähnlichen Peptid bilden die PDEGMEMA-basierten, entschützten Hybridcopolymere Trimere mit kollagen-ähnlichen Triple-Helices in kalter wässriger Lösung, was mittels Zirkular-Dichroismus-Spektroskopie (CD) nachgewiesen werden konnte. Temperaturabhängige CD-Spektroskopie, Trübungsmessungen und dynamische Lichtstreuung deuteten darauf hin, dass sie bei höheren Temperaturen doppelt stimuli-responsive Überstrukturen bilden, die mindestens zwei konformative Übergänge beim Aufheizen durchlaufen. Einer dieser Übergänge wird durch den hydrophoben Kollaps des Polymerblocks induziert, der andere durch Entfalten der kollagen-ähnlichen Triple-Helices.rnAls Ausweitung dieser synthetischen Strategie wurde homotelecheles PDEGMEMA mit zwei PFP-Esterendgruppen dargestellt, wozu der PFP-CTA für die Funktionalisierung der -Endgruppe und die radikalische Substitution des Dithioesters durch Behandlung mit einem Überschuss eines funktionellen AIBN-Derivates für die Funktionalisierung der -Endgruppe ausgenutzt wurde. Die Umsetzung der beiden reaktiven Kettenenden mit dem N-Terminus eines Peptidblocks ergab ein Peptid-Polymer-Peptid Triblockcopolymer.rnSchließlich konnten die anorganisch-organischen Hybridmaterialien PMSSQ-Poly(2,2-diethoxyethylacrylat) (PMSSQ-PDEEA) und PMSSQ-Poly(1,3-dioxolan-2-ylmethylacrylat) (PMSSQ-PDMA) für die Herstellung robuster, peptid-reaktiver Oberflächen durch Spin Coaten und thermisch induziertes Vernetzen angewendet werden. Nach saurem Entschützen der Acetalgruppen in diesen Filmen konnten die resultierenden Aldehydgruppen durch einfaches Eintauchen in eine Lösung mit einer Auswahl von Aminen und Hydroxylaminen umgesetzt werden, wodurch die Oberflächenhydrophilie modifiziert werden konnte. Darüber hinaus konnten auf Basis der unterschiedlichen Stabilität der zwei hier verglichenen Acetalgruppen Entschützungsprotokolle für die exklusive Entschützung der Diethylacetale in PMSSQ-PDEEA und deren Umsetzung ohne Entschützung der zyklischen Ethylenacetale in PMSSQ-PDMA entwickelt werden, die die Herstellung multifunktioneller Oberflächenbeschichtungen z.B. für die Proteinimmobilisierung ermöglichen.
Resumo:
Diese Arbeit ist ein Beitrag zu den schnell wachsenden Forschungsgebieten der Nano-Biotechnologie und Nanomedizin. Sie behandelt die spezifische Gestaltung magnetischer Nanomaterialien für verschiedene biomedizinische Anwendungsgebiete, wie beispielsweise Kontrastmittel für die magnetische Resonanztomographie (MRT) oder "theragnostische" Agenzien für simultane optische/MR Detektion und Behandlung mittels photodynamischer Therapie (PDT).rnEine Vielzahl magnetischer Nanopartikel (NP) mit unterschiedlichsten magnetischen Eigenschaften wurden im Rahmen dieser Arbeit synthetisiert und erschöpfend charakterisiert. Darüber hinaus wurde eine ganze Reihe von Oberflächenmodifizierungsstrategien entwickelt, um sowohl die kolloidale als auch die chemische Stabilität der Partikel zu verbessern, und dadurch den hohen Anforderungen der in vitro und in vivo Applikation gerecht zu werden. Diese Strategien beinhalteten nicht nur die Verwendung bi-funktionaler und multifunktioneller Polymerliganden, sondern auch die Kondensation geeigneter Silanverbindungen, um eine robuste, chemisch inerte und hydrophile Siliziumdioxid- (SiO2) Schale um die magnetischen NP auszubilden.rnGenauer gesagt, der Bildungsmechanismus und die magnetischen Eigenschaften monodisperser MnO NPs wurden ausgiebig untersucht. Aufgrund ihres einzigartigen magnetischen Verhaltens eignen sich diese NPs besonders als (positive) Kontrastmittel zur Verkürzung der longitudinalen Relaxationszeit T1, was zu einer Aufhellung im entsprechenden MRT-Bild führt. Tatsächlich wurde dieses kontrastverbessernde Potential in mehreren Studien mit unterschiedlichen Oberflächenliganden bestätigt. Au@MnO „Nanoblumen“, auf der anderen Seite, sind Vertreter einer weiteren Klasse von Nanomaterialien, die in den vergangenen Jahren erhebliches Interesse in der wissenschaftlichen Welt geweckt hat und oft „Nano-hetero-Materialien“ genannt wird. Solche Nano-hetero-partikel vereinen die individuellen physikalischen und chemischen Eigenschaften der jeweiligen Komponenten in einem nanopartikulärem System und erhöhen dadurch die Vielseitigkeit der möglichen Anwendungen. Sowohl die magnetischen Merkmale von MnO, als auch die optischen Eigenschaften von Au bieten die Möglichkeit, diese „Nanoblumen“ für die kombinierte MRT und optische Bildgebung zu verwenden. Darüber hinaus erlaubt das Vorliegen zweier chemisch unterschiedlicher Oberflächen die gleichzeitige selektive Anbindung von Katecholliganden (auf MnO) und Thiolliganden (auf Au). Außerdem wurde das therapeutische Potential von magnetischen NPs anhand von MnO NPs demonstriert, die mit dem Photosensibilisator Protoporhyrin IX (PP) funktionalisiert waren. Bei Bestrahlung mit sichtbarem Licht initiiert PP die Produktion von zytotoxisch-reaktivem Sauerstoff. Wir zeigen, dass Nierenkrebszellen, die mit PP-funktionalisierten MnO NPs inkubiert wurden nach Bestrahlung mit Laserlicht verenden, während sie ohne Bestrahlung unverändert bleiben. In einem ähnlichen Experiment untersuchten wir die Eigenschaften von SiO2 beschichteten MnO NPs. Dafür wurde eigens eine neuartige SiO2-Beschichtungsmethode entwickelt, die einer nachfolgende weitere Anbindung verschiedenster Liganden und die Einlagerung von Fluoreszenzfarbstoffen durch herkömmliche Silan- Sol-Gel Chemie erlaubt. Die Partikel zeigten eine ausgezeichnete Stabilität in einer ganzen Reihe wässriger Lösungen, darunter auch physiologische Kochsalzlösung, Pufferlösungen und humanes Blutserum, und waren weniger anfällig gegenüber Mn-Ionenauswaschung als einfache PEGylierte MnO NPs. Des Weiteren konnte bewiesen werden, dass die dünne SiO2 Schicht nur einen geringen Einfluss auf das magnetische Verhalten der NPs hatte, so dass sie weiterhin als T1-Kontrastmittel verwendet werden können. Schließlich konnten zusätzlich FePt@MnO NPs hergestellt werden, welche die individuellen magnetischen Merkmale eines ferromagnetischen (FePt) und eines antiferromagnetischen (MnO) Materials vereinen. Wir zeigen, dass wir die jeweiligen Partikelgrößen, und damit das resultierende magnetische Verhalten, durch Veränderung der experimentellen Parameter variieren können. Die magnetische Wechselwirkung zwischen beiden Materialien kann dabei auf Spinkommunikation an der Grenzfläche zwischen beiden NP-Sorten zurückgeführt werden.rn
Resumo:
Die vorliegende Dissertation beschaftigt sich mit der Steuerung der Absorption und Orbitalenergien von Perylenmonoimiden und Perylendiimiden fur die Anwendung in organischer Photovoltaik (OPV). Eine breite Absorption spielt hier eine wichtige Rolle, um moglichst viel Licht zu ernten, das dann in elektrische Energie umgewandelt wird. Um sicher zu stellen, dass die Zelle ezient arbeiten kann, ist die Abstimmung von Orbitalenergien eine zweite wichtige Voraussetzung. Es werden drei neue Design-Konzepte fur Perylenmonoimid-Sensibilatoren fur Festk orper-Farbstosolarzellen (solid-state dye-sensitised solar cells - sDSSCs) untersucht. Die Synthese, die optischen und elektronischen Eigenschaften der neuen Sensibilisator- Verbindungen sowie ihre Leistungsdaten in sDSSCs werden beschrieben und diskutiert. Die in dieser Arbeit vorgestellten Konzepte reichen von der Einfuhrung von - Abstandhaltern uber neue Funktionalisierungen bis hin zur Erweiterung der Perylenmonimid Grundkorper. Der Push-Pull-Charakter der Systeme variiert von starker Kopplung bis zu kompletter Entkopplung des Donors vom Akzeptor. Dies hat einen starken Ein uss sowohl auf die Absorptionseigenschaften, als auch auf die HOMO/LUMO Energie-Niveaus der Verbindungen. Einige der Konzepte konnen auf Perylendiimide ubertragen werden. Ein Beispiel von Perylendiimid (PDI)-Farbsteuerung wird an einer Reihe von drei Terthiophen-PDIs gezeigt
Resumo:
Die Kontroverse über den Glasübergang im Nanometerbereich, z. B. die Glas¬über¬gangs-temperatur Tg von dünnen Polymerfilmen, ist nicht vollständig abgeschlossen. Das dynamische Verhalten auf der Nanoskala ist stark von den einschränkenden Bedingungen abhängig, die auf die Probe wirken. Dünne Polymerfilme sind ideale Systeme um die Dynamik von Polymerketten unter der Einwirkung von Randbedingungen zu untersuchen, wie ich sie in dieser Arbeit variiert habe, um Einblick in dieses Problem zu erhalten.rnrnResonanzverstärkte dynamische Lichtstreuung ist eine Methode, frei von z.B. Fluoreszenzmarkern, die genutzt werden kann um in dünnen Polymerfilmen dynamische Phänomene