5 resultados para large-small scale (LSS) equations of turbulence
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Stylolites are rough paired surfaces, indicative of localized stress-induced dissolution under a non-hydrostatic state of stress, separated by a clay parting which is believed to be the residuum of the dissolved rock. These structures are the most frequent deformation pattern in monomineralic rocks and thus provide important information about low temperature deformation and mass transfer. The intriguing roughness of stylolites can be used to assess amount of volume loss and paleo-stress directions, and to infer the destabilizing processes during pressure solution. But there is little agreement on how stylolites form and why these localized pressure solution patterns develop their characteristic roughness.rnNatural bedding parallel and vertical stylolites were studied in this work to obtain a quantitative description of the stylolite roughness and understand the governing processes during their formation. Adapting scaling approaches based on fractal principles it is demonstrated that stylolites show two self affine scaling regimes with roughness exponents of 1.1 and 0.5 for small and large length scales separated by a crossover length at the millimeter scale. Analysis of stylolites from various depths proved that this crossover length is a function of the stress field during formation, as analytically predicted. For bedding parallel stylolites the crossover length is a function of the normal stress on the interface, but vertical stylolites show a clear in-plane anisotropy of the crossover length owing to the fact that the in-plane stresses (σ2 and σ3) are dissimilar. Therefore stylolite roughness contains a signature of the stress field during formation.rnTo address the origin of stylolite roughness a combined microstructural (SEM/EBSD) and numerical approach is employed. Microstructural investigations of natural stylolites in limestones reveal that heterogeneities initially present in the host rock (clay particles, quartz grains) are responsible for the formation of the distinctive stylolite roughness. A two-dimensional numerical model, i.e. a discrete linear elastic lattice spring model, is used to investigate the roughness evolving from an initially flat fluid filled interface induced by heterogeneities in the matrix. This model generates rough interfaces with the same scaling properties as natural stylolites. Furthermore two coinciding crossover phenomena in space and in time exist that separate length and timescales for which the roughening is either balanced by surface or elastic energies. The roughness and growth exponents are independent of the size, amount and the dissolution rate of the heterogeneities. This allows to conclude that the location of asperities is determined by a polimict multi-scale quenched noise, while the roughening process is governed by inherent processes i.e. the transition from a surface to an elastic energy dominated regime.rn
Resumo:
Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.
Resumo:
Organic farming means a holistic application of agricultural land-use, hence, this study aimed to assess ecological and socio-economic aspects that show benefits of the strategy and achievements of organic farming in comparison to conventional farming in Darjeeling District, State of West Bengal, India and Kanagawa Prefecture/Kanto in Central Japan. The objective of this study has been empirically analysed on aspects of crop diversity, yield, income and sales prices in the two study regions, where 50 households each, i.e. in total 100 households were interviewed at farm-level. Therefore, the small sample size does not necessarily reflect the broad-scale of the use and benefit of organic farming in both regions. The problems faced in mountainous regions in terms of agriculture and livelihoods for small-scale farmers, which are most affected and dependant on their immediate environment, such as low yields, income and illegal felling leading to soil erosion and landslides, are analyzed. Furthermore, factors such as climate, soils, vegetation and relief equally play an important role for these farmers, in terms of land-use. To supplement and improve the income of farmers, local NGOs have introduced organic farming and high value organic cash crops such as ginger, tea, orange and cardamom and small income generating means (floriculture, apiary etc.). For non-certified and certified organic products the volume is given for India, while for Japan only certified organic production figures are given, as there are several definitions for organic in Japan. Hence, prior to the implementation of organic laws and standards, even reduced chemical input was sold as non-certified organic. Furthermore, the distribution and certification system of both countries are explained in detail, including interviews with distribution companies and cooperatives. Supportive observations from Kanagawa Prefecture and the Kanto region are helpful and practical suggestions for organic farmers in Darjeeling District. Most of these are simple and applicable soil management measures, natural insect repelling applications and describe the direct marketing system practiced in Japan. The former two include compost, intercropping, Effective Microorganisms (EM), clover, rice husk charcoal and wood vinegar. More supportive observations have been made at organic and biodynamic tea estates in Darjeeling District, which use citronella, neem, marigold, leguminous and soil binding plants for soil management and natural insect control. Due to the close ties between farmers and consumers in Japan, certification is often neither necessary nor wanted by the producers. They have built a confidence relationship with their customers; thus, such measures are simply not required. Another option is group certification, instead of the expensive individual certification. The former aims at lower costs for farmers who have formed a cooperative or a farmers' group. Consumer awareness for organic goods is another crucial aspect to help improve the situation of organic farmers. Awareness is slightly more advanced in Kanto than in Darjeeling District, as it is improved due to the close (sales) ties between farmers and consumers in Kanto. Interviews conducted with several such cooperatives and companies underline the positive system of TEIKEI. The introduction of organic farming in the study regions has shown positive effects for those involved, even though it still in its beginning stages in Darjeeling District. This study was only partly able to assess the benefits of organic agriculture at its present level for Darjeeling District, while more positively for the organic farmers of Kanto. The organic farming practice needs further improvement, encouragement and monitoring for the Darjeeling District farmers by locals, consumers, NGOs and politicians. The supportive observations from Kanagawa Prefecture and the Kanto region are a small step in this direction, showing how, simple soil improvements and thus, yield and income increases, as well as direct sales options can enhance the livelihood of organic farmers without destroying their environment and natural resources.
Resumo:
Wegen der fortschreitenden Miniaturisierung von Halbleiterbauteilen spielen Quanteneffekte eine immer wichtigere Rolle. Quantenphänomene werden gewöhnlich durch kinetische Gleichungen beschrieben, aber manchmal hat eine fluid-dynamische Beschreibung Vorteile: die bessere Nutzbarkeit für numerische Simulationen und die einfachere Vorgabe von Randbedingungen. In dieser Arbeit werden drei Diffusionsgleichungen zweiter und vierter Ordnung untersucht. Der erste Teil behandelt die implizite Zeitdiskretisierung und das Langzeitverhalten einer degenerierten Fokker-Planck-Gleichung. Der zweite Teil der Arbeit besteht aus der Untersuchung des viskosen Quantenhydrodynamischen Modells in einer Raumdimension und dessen Langzeitverhaltens. Im letzten Teil wird die Existenz von Lösungen einer parabolischen Gleichung vierter Ordnung in einer Raumdimension bewiesen, und deren Langzeitverhalten studiert.
Resumo:
For an infinite field F, we study the integral relationship between the Bloch group B_2(F) and the higher Chow group CH^2(F,3) by proving some relations corresponding to the functional equations of the dilogarithm. As a second result, the groups involved in Suslin’s exact sequence 0 → Tor^1(F^× ,F^×)∼ → CH^2(F,3) → B_2(F) → 0 are identified with homology groups of the cycle complex Z^2(F,•) computing Bloch’s higher Chow groups. Using these results, we give explicit cycles in motivic cohomology generating the integral motivic cohomology groups of some specific number fields and determine whether a given cycle in the Chow group already lives in one of the other groups of Suslin’s sequence. In principle, this enables us to find a presentation of the codimension two Chow group of an arbitrary number field. Finally, we also prove some relations in the higher Chow groups of codimension three modulo 2-torsion coming from relations in the higher Bloch group B_3(F) modulo 2-torsion. Further, we can prove a series of relations in CH^ 3(Q(zeta_p),5) for a primitive pth root of unity zeta_p.