3 resultados para iterative methods
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Elektrische Impedanztomographie soll als kostengünstige und nebenwirkungsfreie Tomographiemethode in der medizinischen Diagnostik, z. B. in der Mammographie dienen. Mit der EIT läßt sich Krebsgewebe von gesundem Gewebe unterscheiden, da es eine signifikant erhöhte Leitfähigkeit aufweist. Damit kann die EIT als Ergänzung zu den klassischen Diagnoseverfahren dienen. So ist z.B. bei jungen Frauen mit einem dichteren Fettgewebe die Identifizierung eines Mammakarzinoms mit der Röntgentomographie nicht immer möglich. Ziel dieser Arbeit war es, einen Prototypen für die Impedanztomographie zu entwickeln und mögliche Anwendungen zu testen. Der Tomograph ist in Zusammenarbeit mit Dr. K.H.Georgi gebaut worden. Der Tomograph erlaubt es niederohmige, Wechselströme an Elektroden auf der Körperoberfläche einzuspeisen. Die Potentiale können an diesen Elektroden programmierbar vorgegeben werden. Weitere hochohmige Elektroden dienen zur Potentialmessung. Um den Hautwiderstand zu überbrücken, werden Wechselstromfrequenzen von 20-100 kHz eingesetzt. Mit der Möglichkeit der Messung von Strom und Potential auf unterschiedlichen Elektroden kann man das Problem des nur ungenau bekannten Hautwiderstandes umgehen. Prinzipiell ist es mit dem Mainzer EIT System möglich, 100 Messungen in der Sekunde durchzuführen. Auf der Basis von mit dem Mainzer EIT gewonnenen Daten sollten unterschiedliche Rekonstruktionsalgorithmen getestet und weiterentwickelt werden. In der Vergangenheit sind verschiedene Rekonstruktionsalgorithmen für das mathematisch schlecht gestellte EIT Problem betrachtet worden. Sie beruhen im Wesentlichen auf zwei Strategien: Die Linearisierung und iterative Lösung des Problems und Gebietserkennungsmethoden. Die iterativen Verfahren wurden von mir dahingehend modifiziert, dass Leitfähigkeitserhöhungen und Leitfähigkeitserniedrigungen gleichberechtigt behandelt werden können. Für den modifizierten Algorithmus wurden zwei verschiedene Rekonstruktionsalgorithmen programmiert und mit synthetischen Daten getestet. Zum einen die Rekonstruktion über die approximative Inverse, zum anderen eine Rekonstruktion mit einer Diskretisierung. Speziell für die Rekonstruktion mittels Diskretisierung wurde eine Methode entwickelt, mit der zusätzliche Informationen in der Rekonstruktion berücksichtigt werden können, was zu einer Verbesserung der Rekonstruktion beiträgt. Der Gebietserkennungsalgorithmus kann diese Zusatzinformationen liefern. In der Arbeit wurde ein neueres Verfahren für die Gebietserkennung derart modifiziert, dass eine Rekonstruktion auch für getrennte Strom- und Spannungselektroden möglich wurde. Mit Hilfe von Differenzdaten lassen sich ausgezeichnete Rekonstruktionen erzielen. Für die medizinischen Anwendungen sind aber Absolutmessungen nötig, d.h. ohne Leermessung. Der erwartende Effekt einer Inhomogenität in der Leitfähigkeit ist sehr klein und als Differenz zweier grosser Zahlen sehr schwierig zu bestimmen. Die entwickelten Algorithmen kommen auch gut mit Absolutdaten zurecht.
Resumo:
In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.
Resumo:
This thesis studies molecular dynamics simulations on two levels of resolution: the detailed level of atomistic simulations, where the motion of explicit atoms in a many-particle system is considered, and the coarse-grained level, where the motion of superatoms composed of up to 10 atoms is modeled. While atomistic models are capable of describing material specific effects on small scales, the time and length scales they can cover are limited due to their computational costs. Polymer systems are typically characterized by effects on a broad range of length and time scales. Therefore it is often impossible to atomistically simulate processes, which determine macroscopic properties in polymer systems. Coarse-grained (CG) simulations extend the range of accessible time and length scales by three to four orders of magnitude. However, no standardized coarse-graining procedure has been established yet. Following the ideas of structure-based coarse-graining, a coarse-grained model for polystyrene is presented. Structure-based methods parameterize CG models to reproduce static properties of atomistic melts such as radial distribution functions between superatoms or other probability distributions for coarse-grained degrees of freedom. Two enhancements of the coarse-graining methodology are suggested. Correlations between local degrees of freedom are implicitly taken into account by additional potentials acting between neighboring superatoms in the polymer chain. This improves the reproduction of local chain conformations and allows the study of different tacticities of polystyrene. It also gives better control of the chain stiffness, which agrees perfectly with the atomistic model, and leads to a reproduction of experimental results for overall chain dimensions, such as the characteristic ratio, for all different tacticities. The second new aspect is the computationally cheap development of nonbonded CG potentials based on the sampling of pairs of oligomers in vacuum. Static properties of polymer melts are obtained as predictions of the CG model in contrast to other structure-based CG models, which are iteratively refined to reproduce reference melt structures. The dynamics of simulations at the two levels of resolution are compared. The time scales of dynamical processes in atomistic and coarse-grained simulations can be connected by a time scaling factor, which depends on several specific system properties as molecular weight, density, temperature, and other components in mixtures. In this thesis the influence of molecular weight in systems of oligomers and the situation in two-component mixtures is studied. For a system of small additives in a melt of long polymer chains the temperature dependence of the additive diffusion is predicted and compared to experiments.