6 resultados para inventory of greenhouse gases

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZusammenfassungDie Spurengase NOx (Stickstoffoxid (NO) und Stickstoffdioxid (NO2)) haben massgeblichen Einfluss auf die Produktion von OH (Hydroxylradikal) und Ozon (O3) in der Troposphäre. Die Bodenemissionen dieser Gase sind weitgehend unbekannt. Das Ziel dieser Arbeit war, die für die NO Bodenemissionen relevanten Prozesse durch Labor und Feldmessungen zu untersuchen und diese durch Modellsimulationen für zwei Regionen, ein tropisches Regenwaldgebiet in Rondônia (Brasilien) und subtropische Savannen in Zimbabwe abzuschätzen. Unter Verwendung der gemessenen NO Werte ergaben die Simulationen mit einem modifizierten prozessorientierten Modell, dass Abholzung in den Tropen nach einer kurzzeitigen Erhöhung zu einer langfristigen Abnahme der Bodenemissionen führt. Ein 'up scaling' der Modellresultate ergab ausgehend von der ursprünglichen Bewaldung der Region eine Verdopplung der NO Bodenemission bis 1999. Sowohl für nährstoffarme Böden der Tropen als auch für die nährstoffreichen Savannenböden waren Landnutzung und Bodenfeuchte die wichtigsten Einflussgrössen für die Regulierung der Emissionen. Über den Zeitraum eines Jahres waren die Emissionsraten der Tropen (0.49 kgNhayr-1) ungefähr halb so gross wie die der subtropischen Savannen (0.86 kgNhayr-1). Solange die Abholzung der Regenwälder voranschreitet werden die Tropen starken Einfluss auf die troposphärische Chemie haben.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Dissertation untersucht die biogeochemischen Vorgänge in der Vegetationsschicht (Bestand) und die Rückkopplungen zwischen physiologischen und physikalischen Umweltprozessen, die das Klima und die Chemie der unteren Atmosphäre beeinflussen. Ein besondere Schwerpunkt ist die Verwendung theoretischer Ansätze zur Quantifizierung des vertikalen Austauschs von Energie und Spurengasen (Vertikalfluss) unter besonderer Berücksichtigung der Wechselwirkungen der beteiligten Prozesse. Es wird ein differenziertes Mehrschicht-Modell der Vegetation hergeleitet, implementiert, für den amazonischen Regenwald parametrisiert und auf einen Standort in Rondonia (Südwest Amazonien) angewendet, welches die gekoppelten Gleichungen zur Energiebilanz der Oberfläche und CO2-Assimilation auf der Blattskala mit einer Lagrange-Beschreibung des Vertikaltransports auf der Bestandesskala kombiniert. Die hergeleiteten Parametrisierungen beinhalten die vertikale Dichteverteilung der Blattfläche, ein normalisiertes Profil der horizontalen Windgeschwindigkeit, die Lichtakklimatisierung der Photosynthesekapazität und den Austausch von CO2 und Wärme an der Bodenoberfläche. Desweiteren werden die Berechnungen zur Photosynthese, stomatären Leitfähigkeit und der Strahlungsabschwächung im Bestand mithilfe von Feldmessungen evaluiert. Das Teilmodell zum Vertikaltransport wird im Detail unter Verwendung von 222-Radon-Messungen evaluiert. Die ``Vorwärtslösung'' und der ``inverse Ansatz'' des Lagrangeschen Dispersionsmodells werden durch den Vergleich von beobachteten und vorhergesagten Konzentrationsprofilen bzw. Bodenflüssen bewertet. Ein neuer Ansatz wird hergeleitet, um die Unsicherheiten des inversen Ansatzes aus denjenigen des Eingabekonzentrationsprofils zu quantifizieren. Für nächtliche Bedingungen wird eine modifizierte Parametrisierung der Turbulenz vorgeschlagen, welche die freie Konvektion während der Nacht im unteren Bestand berücksichtigt und im Vergleich zu früheren Abschätzungen zu deutlich kürzeren Aufenthaltszeiten im Bestand führt. Die vorhergesagte Stratifizierung des Bestandes am Tage und in der Nacht steht im Einklang mit Beobachtungen in dichter Vegetation. Die Tagesgänge der vorhergesagten Flüsse und skalaren Profile von Temperatur, H2O, CO2, Isopren und O3 während der späten Regen- und Trockenzeit am Rondonia-Standort stimmen gut mit Beobachtungen überein. Die Ergebnisse weisen auf saisonale physiologische Änderungen hin, die sich durch höhere stomatäre Leitfähigkeiten bzw. niedrigere Photosyntheseraten während der Regen- und Trockenzeit manifestieren. Die beobachteten Depositionsgeschwindigkeiten für Ozon während der Regenzeit überschreiten diejenigen der Trockenzeit um 150-250%. Dies kann nicht durch realistische physiologische Änderungen erklärt werden, jedoch durch einen zusätzlichen cuticulären Aufnahmemechanismus, möglicherweise an feuchten Oberflächen. Der Vergleich von beobachteten und vorhergesagten Isoprenkonzentrationen im Bestand weist auf eine reduzierte Isoprenemissionskapazität schattenadaptierter Blätter und zusätzlich auf eine Isoprenaufnahme des Bodens hin, wodurch sich die globale Schätzung für den tropischen Regenwald um 30% reduzieren würde. In einer detaillierten Sensitivitätsstudie wird die VOC Emission von amazonischen Baumarten unter Verwendung eines neuronalen Ansatzes in Beziehung zu physiologischen und abiotischen Faktoren gesetzt. Die Güte einzelner Parameterkombinationen bezüglich der Vorhersage der VOC Emission wird mit den Vorhersagen eines Modells verglichen, das quasi als Standardemissionsalgorithmus für Isopren dient und Licht sowie Temperatur als Eingabeparameter verwendet. Der Standardalgorithmus und das neuronale Netz unter Verwendung von Licht und Temperatur als Eingabeparameter schneiden sehr gut bei einzelnen Datensätzen ab, scheitern jedoch bei der Vorhersage beobachteter VOC Emissionen, wenn Datensätze von verschiedenen Perioden (Regen/Trockenzeit), Blattentwicklungsstadien, oder gar unterschiedlichen Spezies zusammengeführt werden. Wenn dem Netzwerk Informationen über die Temperatur-Historie hinzugefügt werden, reduziert sich die nicht erklärte Varianz teilweise. Eine noch bessere Leistung wird jedoch mit physiologischen Parameterkombinationen erzielt. Dies verdeutlicht die starke Kopplung zwischen VOC Emission und Blattphysiologie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the discovery of the nuclear magnetic resonance (NMR) phenomenon, countless NMR techniques have been developed that are today indispensable tools in physics, chemistry, biology, and medicine. As one of the main obstacles in NMR is its notorious lack of sensitivity, different hyperpolarization (HP) methods have been established to increase signals up to several orders of magnitude. In this work, different aspects of magnetic resonance, using HP noble gases, are studied, hereby combining different disciplines of research. The first part examines new fundamental effects in NMR of HP gases, in theory and experiment. The spin echo phenomenon, which provides the basis of numerous modern experiments, is studied in detail in the gas phase. The changes of the echo signal in terms of amplitude, shape, and position, due to the fast translational motion, are described by an extension of the existing theory and computer simulations. With this knowledge as a prerequisite, the detection of intermolecular double-quantum coherences was accomplished for the first time in the gas phase. The second part of this thesis focuses on the development of a practical method to enhance the dissolution process of HP 129Xe, without loss of polarization or shortening of T1. Two different setups for application in NMR spectroscopy and magnetic resonance imaging (MRI) are presented. The continuous operation allows biological and multidimensional spectroscopy in solutions. Also, first in vitro MRI images with dissolved HP 129Xe as contrast agent were obtained at a clinical scanner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ozon (O3) ist ein wichtiges Oxidierungs- und Treibhausgas in der Erdatmosphäre. Es hat Einfluss auf das Klima, die Luftqualität sowie auf die menschliche Gesundheit und die Vegetation. Ökosysteme, wie beispielsweise Wälder, sind Senken für troposphärisches Ozon und werden in Zukunft, bedingt durch Stürme, Pflanzenschädlinge und Änderungen in der Landnutzung, heterogener sein. Es ist anzunehmen, dass diese Heterogenitäten die Aufnahme von Treibhausgasen verringern und signifikante Rückkopplungen auf das Klimasystem bewirken werden. Beeinflusst wird der Atmosphären-Biosphären-Austausch von Ozon durch stomatäre Aufnahme, Deposition auf Pflanzenoberflächen und Böden sowie chemische Umwandlungen. Diese Prozesse zu verstehen und den Ozonaustausch für verschiedene Ökosysteme zu quantifizieren sind Voraussetzungen, um von lokalen Messungen auf regionale Ozonflüsse zu schließen.rnFür die Messung von vertikalen turbulenten Ozonflüssen wird die Eddy Kovarianz Methode genutzt. Die Verwendung von Eddy Kovarianz Systemen mit geschlossenem Pfad, basierend auf schnellen Chemilumineszenz-Ozonsensoren, kann zu Fehlern in der Flussmessung führen. Ein direkter Vergleich von nebeneinander angebrachten Ozonsensoren ermöglichte es einen Einblick in die Faktoren zu erhalten, die die Genauigkeit der Messungen beeinflussen. Systematische Unterschiede zwischen einzelnen Sensoren und der Einfluss von unterschiedlichen Längen des Einlassschlauches wurden untersucht, indem Frequenzspektren analysiert und Korrekturfaktoren für die Ozonflüsse bestimmt wurden. Die experimentell bestimmten Korrekturfaktoren zeigten keinen signifikanten Unterschied zu Korrekturfaktoren, die mithilfe von theoretischen Transferfunktionen bestimmt wurden, wodurch die Anwendbarkeit der theoretisch ermittelten Faktoren zur Korrektur von Ozonflüssen bestätigt wurde.rnIm Sommer 2011 wurden im Rahmen des EGER (ExchanGE processes in mountainous Regions) Projektes Messungen durchgeführt, um zu einem besseren Verständnis des Atmosphären-Biosphären Ozonaustauschs in gestörten Ökosystemen beizutragen. Ozonflüsse wurden auf beiden Seiten einer Waldkante gemessen, die einen Fichtenwald und einen Windwurf trennt. Auf der straßenähnlichen Freifläche, die durch den Sturm "Kyrill" (2007) entstand, entwickelte sich eine Sekundärvegetation, die sich in ihrer Phänologie und Blattphysiologie vom ursprünglich vorherrschenden Fichtenwald unterschied. Der mittlere nächtliche Fluss über dem Fichtenwald war -6 bis -7 nmol m2 s-1 und nahm auf -13 nmol m2 s-1 um die Mittagszeit ab. Die Ozonflüsse zeigten eine deutliche Beziehung zur Pflanzenverdunstung und CO2 Aufnahme, was darauf hinwies, dass während des Tages der Großteil des Ozons von den Pflanzenstomata aufgenommen wurde. Die relativ hohe nächtliche Deposition wurde durch nicht-stomatäre Prozesse verursacht. Die Deposition über dem Wald war im gesamten Tagesverlauf in etwa doppelt so hoch wie über der Freifläche. Dieses Verhältnis stimmte mit dem Verhältnis des Pflanzenflächenindex (PAI) überein. Die Störung des Ökosystems verringerte somit die Fähigkeit des Bewuchses, als Senke für troposphärisches Ozon zu fungieren. Der deutliche Unterschied der Ozonflüsse der beiden Bewuchsarten verdeutlichte die Herausforderung bei der Regionalisierung von Ozonflüssen in heterogen bewaldeten Gebieten.rnDie gemessenen Flüsse wurden darüber hinaus mit Simulationen verglichen, die mit dem Chemiemodell MLC-CHEM durchgeführt wurden. Um das Modell bezüglich der Berechnung von Ozonflüssen zu evaluieren, wurden gemessene und modellierte Flüsse von zwei Positionen im EGER-Gebiet verwendet. Obwohl die Größenordnung der Flüsse übereinstimmte, zeigten die Ergebnisse eine signifikante Differenz zwischen gemessenen und modellierten Flüssen. Zudem gab es eine klare Abhängigkeit der Differenz von der relativen Feuchte, mit abnehmender Differenz bei zunehmender Feuchte, was zeigte, dass das Modell vor einer Verwendung für umfangreiche Studien des Ozonflusses weiterer Verbesserungen bedarf.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical model for studying the influences of deep convective cloud systems on photochemistry was developed based on a non-hydrostatic meteorological model and chemistry from a global chemistry transport model. The transport of trace gases, the scavenging of soluble trace gases, and the influences of lightning produced nitrogen oxides (NOx=NO+NO2) on the local ozone-related photochemistry were investigated in a multi-day case study for an oceanic region located in the tropical western Pacific. Model runs considering influences of large scale flows, previously neglected in multi-day cloud resolving and single column model studies of tracer transport, yielded that the influence of the mesoscale subsidence (between clouds) on trace gas transport was considerably overestimated in these studies. The simulated vertical transport and scavenging of highly soluble tracers were found to depend on the initial profiles, reconciling contrasting results from two previous studies. Influences of the modeled uptake of trace gases by hydrometeors in the liquid and the ice phase were studied in some detail for a small number of atmospheric trace gases and novel aspects concerning the role of the retention coefficient (i.e. the fraction of a dissolved trace gas that is retained in the ice phase upon freezing) on the vertical transport of highly soluble gases were illuminated. Including lightning NOx production inside a 500 km 2-D model domain was found to be important for the NOx budget and caused small to moderate changes in the domain averaged ozone concentrations. A number of sensitivity studies yielded that the fraction of lightning associated NOx which was lost through photochemical reactions in the vicinity of the lightning source was considerable, but strongly depended on assumptions about the magnitude and the altitude of the lightning NOx source. In contrast to a suggestion from an earlier study, it was argued that the near zero upper tropospheric ozone mixing ratios which were observed close to the study region were most probably not caused by the formation of NO associated with lightning. Instead, it was argued in agreement with suggestions from other studies that the deep convective transport of ozone-poor air masses from the relatively unpolluted marine boundary layer, which have most likely been advected horizontally over relatively large distances (both before and after encountering deep convection) probably played a role. In particular, it was suggested that the ozone profiles observed during CEPEX (Central Equatorial Pacific Experiment) were strongly influenced by the deep convection and the larger scale flow which are associated with the intra-seasonal oscillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.