3 resultados para implicit theories
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.
Resumo:
Intersection theory on moduli spaces has lead to immense progress in certain areas of enumerative geometry. For some important areas, most notably counting stable maps and counting stable sheaves, it is important to work with a virtual fundamental class instead of the usual fundamental class of the moduli space. The crucial prerequisite for the existence of such a class is a two-term complex controlling deformations of the moduli space. Kontsevich conjectured in 1994 that there should exist derived version of spaces with this specific property. Another hint at the existence of these spaces comes from derived algebraic geometry. It is expected that for every pair of a space and a complex controlling deformations of the space their exists, under some additional hypothesis, a derived version of the space having the chosen complex as cotangent complex. In this thesis one version of these additional hypothesis is identified. We then show that every space admitting a two-term complex controlling deformations satisfies these hypothesis, and we finally construct the derived spaces.
Resumo:
rnThis thesis is on the flavor problem of Randall Sundrum modelsrnand their strongly coupled dual theories. These models are particularly wellrnmotivated extensions of the Standard Model, because they simultaneously address rntherngauge hierarchy problem and the hierarchies in the quarkrnmasses and mixings. In order to put this into context, special attention is given to concepts underlying therntheories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). ThernAdS/CFTrnduality is introduced and its implications for the Randall Sundrum model withrnfermions in the bulk andrngeneral bulk gauge groups is investigated. It will be shown that the differentrnterms in the general 5D propagator of a bulk gauge field can be related tornthe corresponding diagrams of the strongly coupled dual, which allows for arndeeperrnunderstanding of the origin of flavor changing neutral currents generated by thernexchange of the Kaluza Klein excitations of these bulk fields.rnIn the numerical analysis, different observables which are sensitive torncorrections from therntree-levelrnexchange of these resonances will be presented on the basis of updatedrnexperimental data from the Tevatron and LHC experiments. This includesrnelectroweak precision observables, namely corrections to the S and Trnparameters followed by corrections to the Zbb vertex, flavor changingrnobservables with flavor changes at one vertex, viz. BR (Bd -> mu+mu-) and BR (Bs -> mu+mu-), and two vertices,rn viz. S_psiphi and |eps_K|, as well as bounds from direct detectionrnexperiments. rnThe analysis will show that all of these bounds can be brought in agreement withrna new physics scale Lambda_NP in the TeV range, except for the CPrnviolating quantity |eps_K|, which requires Lambda_NP= Ord(10) TeVrnin the absencernof fine-tuning. The numerous modifications of the Randall Sundrum modelrnin the literature, which try to attenuate this bound are reviewed andrncategorized.rnrnSubsequently, a novel solution to this flavor problem, based on an extendedrncolor gauge group in the bulk and its thorough implementation inrnthe RS model, will be presented, as well as an analysis of the observablesrnmentioned above in the extended model. This solution is especially motivatedrnfromrnthe point of view of the strongly coupled dual theory and the implications forrnstrongly coupled models of new physics, which do not possess a holographic dual,rnare examined.rnFinally, the top quark plays a special role in models with a geometric explanation ofrnflavor hierarchies and the predictions in the Randall-Sundrum model with andrnwithout the proposed extension for the forward-backward asymmetryrnA_FB^trnin top pair production are computed.