10 resultados para extreme high vacuum (XHV)
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Aim of this thesis was to further extend the applicability of the Fourier-transform (FT) rheology technique especially for non-linear mechanical characterisation of polymeric materials on the one hand and to investigated the influence of the degree of branching on the linear and non-linear relaxation behaviour of polymeric materials on the other hand. The latter was achieved by employing in particular FT-rheology and other rheological techniques to variously branched polymer melts and solutions. For these purposes, narrowly distributed linear and star-shaped polystyrene and polybutadiene homo-polymers with varying molecular weights were anionically synthesised using both high-vacuum and inert atmosphere techniques. Furthermore, differently entangled solutions of linear and star-shaped polystyrenes in di-sec-octyl phthalate (DOP) were prepared. The several linear polystyrene solutions were measured under large amplitude oscillatory shear (LAOS) conditions and the non-linear torque response was analysed in the Fourier space. Experimental results were compared with numerical predictions performed by Dr. B. Debbaut using a multi-mode differential viscoelastic fluid model obeying the Giesekus constitutive equation. Apart from the analysis of the relative intensities of the harmonics, a detailed examination of the phase information content was developed. Further on, FT-rheology allowed to distinguish polystyrene melts and solutions due to their different topologies where other rheological measurements failed. Significant differences occurred under LAOS conditions as particularly reflected in the phase difference of the third harmonic, ¶3, which could be related to shear thinning and shear thickening behaviour.
Resumo:
Conjugated polymers are macromolecules that possess alternating single and double bonds along the main chain. These polymers combine the optoelectronic properties of semiconductors with the mechanical properties and processing advantages of plastics. In this thesis we discuss the synthesis, characterization and application of polyphenylene-based materials in various electronic devices. Poly(2,7-carbazole)s have the potential to be useful as blue emitters, but also as donor materials in solar cells due to their better hole-accepting properties. However, it is associated with two major drawbacks (1) the emission maximum occurs at 421 nm where the human eye is not very sensitive and (2) the 3- and 6- positions of carbazole are susceptible to chemical or electrochemical degradation. To overcome these problems, the ladder-type nitrogen-bridged polymers are synthesized. The resulting series of polymers, nitrogen-bridged poly(ladder-type tetraphenylene), nitrogen-bridged poly(ladder-type pentaphenylene), nitrogen-bridged poly(ladder-type hexaphenylene) and its derivatives are discussed in the light of photophysical and electrochemical properties and tested in PLEDs, solar cell, and OFETs. A promising trend which has emerged in recent years is the use of well defined oligomers as model compounds for their corresponding polymers. However, the uses of these molecules are many times limited by their solubility and one has to use vapor deposition techniques which require high vacuum and temperature and cannot be used for large area applications. One solution to this problem is the synthesis of small molecules having enough alkyl chain on the backbone so that they can be solution or melt processed and has the ability to form thin films like polymers as well as retain the high ordered structure characteristics of small molecules. Therefore, in the present work soluble ladderized oligomers based on thiophene and carbazole with different end group were made and tested in OFET devices. Carbazole is an attractive raw material for the synthesis of dyes since it is cheap and readily available. Carbazoledioxazine, commercially known as violet 23 is a representative compound of dioxazine pigments. As part of our efforts into developing cheap alternatives to violet 23, the synthesis and characterization of a new series of dyes by Buchwald-type coupling of 3-aminocarbazole with various isomers of chloroanthraquinone are presented.
Resumo:
The dissertation presented here deals with high-precision Penning trap mass spectrometry on short-lived radionuclides. Owed to the ability of revealing all nucleonic interactions, mass measurements far off the line of ß-stability are expected to bring new insight to the current knowledge of nuclear properties and serve to test the predictive power of mass models and formulas. In nuclear astrophysics, atomic masses are fundamental parameters for the understanding of the synthesis of nuclei in the stellar environments. This thesis presents ten mass values of radionuclides around A = 90 interspersed in the predicted rp-process pathway. Six of them have been experimentally determined for the first time. The measurements have been carried out at the Penning-trap mass spectrometer SHIPTRAP using the destructive time-of-fligh ion-cyclotron-resonance (TOF-ICR) detection technique. Given the limited performance of the TOF-ICR detection when trying to investigate heavy/superheavy species with small production cross sections (σ< 1 μb), a new detection system is found to be necessary. Thus, the second part of this thesis deals with the commissioning of a cryogenic double-Penning trap system for the application of a highly-sensitive, narrow-band Fourier-transform ion-cyclotron-resonance (FT-ICR) detection technique. With the non-destructive FT-ICR detection method a single singly-charged trapped ion will provide the required information to determine its mass. First off-line tests of a new detector system based on a channeltron with an attached conversion dynode, of a cryogenic pumping barrier, to guarantee ultra-high vacuum conditions during mass determination, and of the detection electronics for the required single-ion sensitivity are reported.
Resumo:
For the advancement of spinelectronicsmuch importance is attached to Heusler compounds. Especially compounds with the stoichiometry Co2YZ are supposed to exhibit a large asymmetry between majority and minority electrons at the Fermi edge. Ideally, only majority states are present. This property leads to high magnetoresistive effects. However, the experimental results available at present fall behind the expectations. In particular, a strong reduction of the spin asymmetry with increasing temperature is problematic. For this reason,rnthe investigation of further representatives of this material class as well as optimization of their deposition is required. Therefore, during the course of this work thin Heusler films with the composition Co2Cr0.6Fe0.4Al and Co2Mn1−xFexSi were fabricated. At first, this was accomplished by sputter deposition, which is the standard technique for the preparation of thin Heuslerrnfilms. It resulted also here in samples with high structural order. On the other hand, these films exhibit only a reduced magnetic moment. To improve this situation, a laser ablation system was constructed. The resulting film deposition under ultra-high vacuum led to a clear improvement especially of the magnetic properties. In addition to the improved deposition conditions, this method allowed the flexible variation of the film stoichiometry as well. This possibility was successfully demonstrated in this work by deposition of epitaxial Co2Mn1−xFexSi films. The availableness of these high quality quaternary alloys allowed the systematic investigation of their electronic properties. Band structure calculations predict that the substitution of Mn by Fe lead to a shift of the Fermi energy over the minority energy gap, whereas the density of states remains nearly unchanged. This prediction could by tested by electronic transport measurements. Especially the normal Hall effect, which was measured at these samples, shows a transition from a hole-like charge transport in Co2MnSi to an electron-like transport in Co2FeSi. This is in accordance with corresponding band structure calculations as well as with comparative XMCD experiments. Furthermore, the behavior of the anomalous Hall effect was studied. Here it could be seen, that the effect is influenced by two mechanisms: On the one hand an intrinsic contribution, caused by the topology of the Fermi surface and on the other hand by temperature dependent impurity scattering. These two effects have an opposing influence on the anomalous Hall effect. This can lead to a sign reversal of the anomalous contribution. This behavior has been predicted just recently and was here systematically investigated for the first time for Heusler compounds.
Resumo:
Self-assembled molecular structures were investigated on insulating substrate surfaces using non-contact atomic force microscopy. Both, substrate preparation and molecule deposition, took place under ultra-high vacuum conditions. First, C60 molecules were investigated on the TiO2 (110) surface. This surface exhibits parallel running troughs at the nanometer scale, which strongly steer the assembly of the molecules. This is in contrast to the second investigated surface. The CaF2 (111) surface is atomically flat and the molecular assemblyrnwas observed to be far less affected by the surface. Basically different island structures were observed to what is typically know. Based on extensive experimental studies and theoretical considerations, a comprehensive picture of the processes responsible for the island formation of C60 molecules on this insulating surfaces was developed. The key process for the emergence of the observed novel island structures was made out to be the dewetting of molecules from the substrate. This new knowledge allows to further understand andrnexploit self-assembly techniques in structure fabrication on insulating substrate surfaces. To alter island formation and island structure, C60 molecules were codeposited with second molecule species (PTCDI and SubPc) on the CaF2 (111) surface. Depending on the order of deposition, quiet different structures were observed to arise. Thus, these are the first steps towards more complex functional arrangements consisting of two molecule species on insulating surfaces.
Resumo:
This thesis presents a detailed and successful study of molecular self-assembly on the calcite CaCO3(10-14) surface. One reason for the superior applicability of this particular surface is given by reflecting the well-known growth modes. Layer-by-layer growth, which is a necessity for the formation of templated two-dimensional (2D) molecular structures, is particularly favoured on substrates with a high surface energy. The CaCO3(10-14) surface is among those substrates and, thus, most promising. rnrnAll experiments in this thesis were performed using the non-contact atomic force microscope (NC-AFM) under ultra-high vacuum conditions. The acquisition of drift-free data became in this thesis possible owing to the herein newly developed atom-tracking system. This system features a lateral tip-positioning precision of at least 50pm. Furthermore, a newly developed scan protocol was implemented in this system, which allows for the acquisition of dense three-dimensional (3D) data under room-temperature conditions. An entire 3D data set from a CaCO3(10-14) surface consisting of 85x85x500 pixel is discussed. rnrnThe row-pairing and (2x1) reconstructions of the CaCO3(10-14) surface constitute most interesting research subjects. For both reconstructions, the NC-AFM imaging was classified to a total of 12 contrast modes. Eight of these modes were observed within this thesis, some of them for the first time. Together with literature findings, a total of 10 modes has been observed experimentally to this day. Some contrast modes presented themselves as highly distance-dependent and at least for one contrast mode, a severe tip-termination influence was found. rnrnMost interestingly, the row-pairing reconstruction was found to break a symmetry element of the CaCO3(10-14) surface. With the presence of this reconstruction, the calcite (10-14) surface becomes chiral. From high-resolution NC-AFM data, the identification of the enantiomers is here possible and is presented for one enantiomer in this thesis. rnrnFive studies of self-assembled molecular structures on calcite (10-14) surfaces are presented. Only for one system, namely HBC/CaCO3(10-14), the formation of a molecular bulk structure was observed. This well-known occurence of weak molecule-insulator interaction hinders the investigation of two-dimensional molecular self-assembly. It was, however, possible to force the formation of an island phase for this system upon following a variable-temperature preparation. rnFor the C60/CaCO3(10-14) system it is most notably that no branched island morphologies were found. Instead, the first C60 layer appeared to wet the calcite surface. rnrnIn all studies, the molecules arranged themselves in ordered superstructures. A templating effect due to the underlying calcite substrate was evident for all systems. This templating strikingly led either to the formation of large commensurate superstructures, such as (2x15) with a 14 molecule basis for the C60/CaCO3(10-14) system, or prevented the vast growth of incommensurate molecular motifs, such as the chicken-wire structure in the trimesic acid (TMA)/CaCO3(10-14) system. rnrnThe molecule-molecule and the molecule-substrate interaction was increased upon choosing molecules with carboxylic acid moieties in the third, fourth and fifth study, using terephthalic acid, TMA and helicene molecules. In all these experiments, hydrogen-bonded assemblies were created. rnrnDirected hydrogen bond formation combined with intermolecular pi-pi interaction is employed in the fifth study, where the formation of uni-directional molecular "wires" from single helicene molecules succeeded. Each "wire" is composed of heterochiral helicene pairs, well-aligned along the [01-10] substrate direction and stabilised by pi-pi interaction.
Resumo:
Heusler compounds are key materials for spintronic applications. They have attracted a lot of interest due to their half-metallic properties predicted by band structure calculations.rnThe aim of this work is to evaluate experimentally the validity of the predictions of half metallicity by band structure calculations for two specific Heusler compounds, Co2FeAl0.3Si0.7 and Co2MnGa. Two different spectroscopy methods for the analysis of the electronic properties were used: Angular Resolved Ultra-violet Photoemission Spectroscopy (ARUPS) and Tunneling Spectroscopy.rnHeusler compounds are prepared as thin films by RF-sputtering in an ultra-high vacuum system. rnFor the characterization of the samples, bulk and surface crystallographic and magnetic properties of Co2FeAl0.3Si0.7 and Co2MnGa are studied. X-ray and electron diffraction reveal a bulk and surface crossover between two different types of sublattice order (from B2 to L21) with increasing annealing temperature. X-ray magnetic circular dichroism results show that the magnetic properties in the surface and bulk are identical, although the magnetic moments obtained are 5% below from the theoretically predicted.rnBy ARUPS evidence for the validity of the predicted total bulk density of states (DOS) was demonstrated for both Heusler compounds. Additional ARUPS intensity contributions close to the Fermi energy indicates the presence of a specific surface DOS. Moreover, it is demonstrated that the crystallographic order, controlled by annealing, plays an important role on brodening effects of DOS features. Improving order resulted in better defined ARUPS features.rnTunneling magnetoresistance measurements of Co2FeAl0.3Si0.7 and Co2MnGa based MTJ’s result in a Co2FeAl0.3Si0.7 spin polarization of 44%, which is the highest experimentally obtained value for this compound, although it is lower than the 100% predicted. For Co2MnGa no high TMR was achieved.rnUnpolarized tunneling spectroscopy reveals contribution of interface states close to the Fermi energy. Additionally magnon excitations due to magnetic impurities at the interface are observed. Such contributions can be the reason of a reduced TMR compared to the theoretical predictions. Nevertheless, for energies close to the Fermi energy and for Co2MnGa, the validity of the band structure calculations is demonstrated with this technique as well.
Resumo:
Für die Realisierung zukünftiger Technologien, wie z.B. molekulare Elektronik, werden Strategien benötigt, um funktionale Strukturen direkt auf Oberflächen zu erzeugen. Für die Bewältigung dieser Aufgabe ist die molekulare Selbstanordnung ein äußerst vielversprechender Bottom-up-Ansatz. Hierbei ist eine der größten Herausforderungen das Zusammenspiel aus intramolekularer Wechselwirkung und der Wechselwirkung zwischen Substrat und Molekülen in ein Gleichgewicht zu bringen. Da jedoch die wirkenden Kräfte der molekularen Selbstanordnung ausschließlich reversibler Natur sind, ist eine langfristige Stabilität fragwürdig. Somit ist die kovalente Verknüpfung der gebildeten Strukturen durch Reaktionen direkt auf der Oberfläche unerlässlich, um die Stabilität der Strukturen weiter zu erhöhen. Hierzu stellt die vorliegende Arbeit eine ausführliche Studie zu molekularer Selbstanordnung und der zielgerichteten Modifikation ebensolcher Strukturen dar. Durch den Einsatz von hochauflösender Rasterkraftmikroskopie im Ultrahochvakuum, welche es erlaubt einzelne Moleküle auf Nichtleitern abzubilden, wurde der maßgebliche Einfluss von Ankerfunktionalitäten auf den Prozess der molekularen Selbstanordnung gezeigt. Des Weiteren konnte die Stabilität der selbst angeordneten Strukturen durch neue Oberflächenreaktionskonzepte entschieden verbessert werden. Der Einfluss von Ankerfunktionen, die elektrostatische Wechselwirkung zwischen Molekül und Substrat vermitteln, auf den Strukturbildungsprozess der molekularen Selbstanordnung wird eingehend durch den Vergleich eines aromatischen Moleküls und seines vierfach chlorierten Derivates gezeigt. Für diese beiden Moleküle wurde ein deutlich unterschiedliches Verhalten der Selbstanordnung beobachtet. Es wird gezeigt, dass die Fähigkeit zur Bildung selbst angeordneter, stabiler Inseln entscheidend durch die Substituenten und die Abmessungen des Moleküls beeinflusst wird. Auch wird in dieser Arbeit die erste photochemische Reaktion organischer Moleküle auf einem Isolator gezeigt. Qualitative und quantitative Ergebnisse liefern ein detailliertes Bild darüber, wie die Abmessungen des Substratgitters die Richtung der Reaktion gezielt beeinflussen. Des Weiteren wird ein allgemeines Konzept zur selektiven Stabilisierung selbstangeordneter Molekülstrukturen durch den kontrollierten Transfer von Elektronen präsentiert. Durch die gezielte Steuerung der Menge an Dotierungsatomen wird die Desorptionstemperatur der molekularen Inseln signifikant erhöht und das Desorptionsverhalten der Inseln entschieden verändert. Diese Arbeit präsentiert somit erfolgreich durchgeführte Strategien um den Prozess der molekularen Selbstanordnung zu steuern, sowie entscheidende Mechanismen um die Stabilisierung und Modifizierung von selbst angeordneten Strukturen zu gewährleisten.
Resumo:
The aim of this work is to measure the stress inside a hard micro object under extreme compression. To measure the internal stress, we compressed ruby spheres (a-Al2O3: Cr3+, 150 µm diameter) between two sapphire plates. Ruby fluorescence spectrum shifts to longer wavelengths under compression and can be related to the internal stress by a conversion coefficient. A confocal laser scanning microscope was used to excite and collect fluorescence at desired local spots inside the ruby sphere with spatial resolution of about 1 µm3. Under static external loads, the stress distribution within the center plane of the ruby sphere was measured directly for the first time. The result agreed to Hertz’s law. The stress across the contact area showed a hemispherical profile. The measured contact radius was in accord with the calculation by Hertz’s equation. Stress-load curves showed spike-like decrease after entering non-elastic phase, indicating the formation and coalescence of microcracks, which led to relaxing of stress. In the vicinity of the contact area luminescence spectra with multiple peaks were observed. This indicated the presence of domains of different stress, which were mechanically decoupled. Repeated loading cycles were applied to study the fatigue of ruby at the contact region. Progressive fatigue was observed when the load exceeded 1 N. As long as the load did not exceed 2 N stress-load curves were still continuous and could be described by Hertz’s law with a reduced Young’s modulus. Once the load exceeded 2 N, periodical spike-like decreases of the stress could be observed, implying a “memory effect” under repeated loading cycles. Vibration loading with higher frequencies was applied by a piezo. Redistributions of intensity on the fluorescence spectra were observed and it was attributed to the repopulation of the micro domains of different elasticity. Two stages of under vibration loading were suggested. In the first stage continuous damage carried on until certain limit, by which the second stage, e.g. breakage, followed in a discontinuous manner.
Resumo:
One of the most important challenges in chemistry and material science is the connection between the contents of a compound and its chemical and physical properties. In solids, these are greatly influenced by the crystal structure.rnrnThe prediction of hitherto unknown crystal structures with regard to external conditions like pressure and temperature is therefore one of the most important goals to achieve in theoretical chemistry. The stable structure of a compound is the global minimum of the potential energy surface, which is the high dimensional representation of the enthalpy of the investigated system with respect to its structural parameters. The fact that the complexity of the problem grows exponentially with the system size is the reason why it can only be solved via heuristic strategies.rnrnImprovements to the artificial bee colony method, where the local exploration of the potential energy surface is done by a high number of independent walkers, are developed and implemented. This results in an improved communication scheme between these walkers. This directs the search towards the most promising areas of the potential energy surface.rnrnThe minima hopping method uses short molecular dynamics simulations at elevated temperatures to direct the structure search from one local minimum of the potential energy surface to the next. A modification, where the local information around each minimum is extracted and used in an optimization of the search direction, is developed and implemented. Our method uses this local information to increase the probability of finding new, lower local minima. This leads to an enhanced performance in the global optimization algorithm.rnrnHydrogen is a highly relevant system, due to the possibility of finding a metallic phase and even superconductor with a high critical temperature. An application of a structure prediction method on SiH12 finds stable crystal structures in this material. Additionally, it becomes metallic at relatively low pressures.