8 resultados para dual-core structure
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Polymere Hohlstrukturen eignen sich um eine große Anzahl an Gastmolekülen zu verkapseln und bieten somit interessante Anwendungsmöglichkeiten, z.B. im Bereich kontrollierter Transportsysteme. Solche wohl definierten Strukturen lassen sich mittels des Sol-Gel-Prozesses durch Hydrolyse und Kondensation von Dialkoxydialkyl- und Trialkoxyalkylsilanen in wässriger Dispersion in Gegenwart von Tensiden synthetisieren. Die Methode ermöglicht den Aufbau verschiedener Kern-Schale-Systeme, inklusive Hohlkugelarchitekturen, mit Durchmessern von 10-100 nm. Abhängig von den eingestellten Parametern wird dabei eine bimodale Größenverteilung der Partikel beobachtet. Die bimodalen Proben wurden mittels der circularen asymmetrischen Fluss Feld-Fluss Fraktionierung (CAFFFE) fraktioniert. NMR-Untersuchungen deuten darauf hin, dass die Ursache der bimodalen Verteilung in der Synthese der Kerndispersion zu liegen scheint. MALDI-TOF-MS und GC-Messungen zeigen, dass der Kern der größeren Partikel ausschließlich aus zyklischen Kondensationsprodukten besteht, während im Kernmaterial der kleineren Partikel zusätzlich noch lineare Polydimethylsiloxan-Ketten vorhanden sind. Unter der Annahme, dass PDMS als Ultrahydrophob wirkt, lässt sich die Ostwaldreifung als Ursache der Bimodalität ausmachen. Eine Erhöhung des PDMS-Anteils, der zur Stabilisierung gegen den Reifungsprozess notwendig ist, führt zu einer monomodalen Verteilung der erhaltenen Partikel.
Resumo:
Im Rahmen der vorliegenden Arbeit wurden eine Vielzahl optisch aktiver 1,2,6-trisubstituierte Piperidine stereoselekiv dargestellt. Bei der anschließenden Aza-Claisen-Umlagerunge wurden daraus chirale Azecinone (zyklische, ungesättigte, zehngliedrige Lactame) gebildet, die sich für die Totalsynthese u. a. von Clavepictin A eignen.rnrnDazu wurde zunächst über eine weitere zwitterionische Aza-Claisen-Umlagerung ein Dien aufgebaut, welches durch intramolekulare Grubbs-Metathese zum Piperidin geschlossen werden konnte. Daraus wurde ein Baikiain- sowie ein Pipecolinsäure-Derivat hergestellt.rnrnAuf einem weiteren Weg zu hochsubstituierten Piperidinen wurde eine von Katritzky et al. erarbeitete Synthese eines Bisaminals auf ihre Flexibilität bezüglich des Substitutionsmusters in 2- und 6-Position am Piperidinring durch eine Kaskade an Reduktionen und Grignard-Reaktionen zu stereoselektiv trisubstituierten 2-Vinyl-Piperidinen untersucht. rnrnDie anschließende zwitterionische Aza-Claisen-Umlagerung an diesen Vinyl-Piperidinen mit verschiedenen Säurefluoriden diente jeweils zur Überprüfung der Tauglichkeit der ausgewählten Reaktionswege zur Totalsynthese von Clavepictin. Durch Strukturbestimmung der gebildeten Azecinone mittels NOESY wurde der erwartete Chiralitätstransfer bei der Umlagerungsreaktion untersucht bzw. bestätigt.rnrnNebenbei wurde dabei ein Chinolizidin-Derivat gefunden, dessen Darstellung durch eine neuartige Dominoreaktion erklärt wurde und dessen Grundstruktur einen weiteren und ggf. kürzeren Syntheseweg zu Clavepictin A und seinen Derivaten zulassen sollte. rn
Resumo:
Ziel der hier vorliegenden Dissertation ist es, Übergangsmetallpivalate durch gezielte Substitution monodentater Donorliganden in apikalen Positionen, unter Erhalt ihrer Grundstruktur, zu höherdimensionalen Verbindungen zu verknüpfen. Als Ausgangs-verbindungen dienen dabei [Fe3O(O2C-tBu)6(OH2)3]O2C-tBu und [Ni2(OH2)(O2C-tBu)4(HO2C-tBu)4].rnrnIm ersten Teil dieser Arbeit konnten, in Abhängigkeit der in den Reaktionen eingesetzten Liganden mit [Fe3O(O2C-tBu)6(OH2)3]O2C-tBu, symmetrisch oder asymmetrisch substituierte dreikernige Verbindungen erhalten werden. Deren strukturellen und magnetischen Eigenschaften konnten untersucht werden und die daraus resultierenden magnetostrukturellen Korrelationen auf die folgenden vorgestellten mehrkernigen bzw. höherdimensionalen Verbindungen übertragen werden, die erheblich an Komplexität zugenommen haben.rnDie 0-dimensionalen dreikernigen Einheiten zeigen, abhängig von ihren Fe-O-Bindungslängen in den µ3-Oxo verbrückten Einheiten, unterschiedlich starke antiferro-magnetische Austauschwechselwirkungen. Wenn in den Verbindungen eine längere Fe-O-Bindung und zwei kürzere Fe-O-Bindungen existieren, können diese Typ 2:a zugeordnet werden. Daraus folgt, dass die Daten der magnetischen Suszeptibilität mit zwei unterschiedlich starken Austauschwechselwirkungen (J-Kopplungen) zu simulieren sind. Es liegen eine stärkere J-Kopplung über die kurzen Fe-O-Bindungen und zwei schwächere über die lange Fe-O-Bindung vor (J1 > J2). Existieren hingegen eine kürzere Fe-O-Bindung und zwei längere Fe-O-Bindungen (Typ 2:b) sind nun die magnetischen Suszeptibilitätsdaten nur mit zwei stärkeren und einer schwächeren Kopplung zu simulieren (J1 < J2). Die vorgestellten Verbindungen zeigen alle einen Spingrundzustand S≠0, der durch konkurrierende Wechselwirkungen der Spinzentren in Dreieckssituationen begründet ist. rnDer zweite Teil der Arbeit beschäftigte sich mit dem gezielten Aufbau mehrkerniger Verbindungen, in denen die dreikernige Einheit als Grundmotiv erhalten bleiben konnte. Die Austauschwechselwirkungen der fünf- und sechskernigen Verbindungen konnten in Abhängigkeit der Bindungslängen und basierend auf den Ergebnissen der dreikernigen Einheiten aus dem ersten Teil, bestimmt werden. rnDie Synthesen der 4-Hydroxybenzaldehyd verbrückten Kettenverbindung sowie des über 3,5,3’,5’-Tetramethyl-1H,1’H-[4,4’]bipyrazolyl verknüpften 3-dimensionalen Nickelnetzwerks zeigten die erfolgreiche Umsetzung des „Bottom Up“ Ansatzes. Durch Erhaltung des jeweiligen Grundmotivs der verwendeten Ausgangsverbindung konnten die magnetischen Austauschwechselwirkungen unter Einbeziehung schwacher Wechselwirkungen durch den Raum, mit Hilfe der Theta-Weiss Temperatur, in den Simulationen bestimmt werden.rnrnDamit stellt der „Bottom Up“ Ansatz eine hervorragende Syntesestrategie für den Aufbau höherdimensionaler Verbindungen, ausgehend von zwei- bzw. dreikernigen Übergangs-metallkomplexen, dar.rn
Resumo:
Core-shell macromolecules with dendritic polyphenylene core and polymer shell Zusammenfassung / Abstract Core-shell macromolecular structures have become of great interest in materials science because they gave an opportunity to combine a large variety of chemical and physical properties in the single molecule, by combination of different (in terms of chemistry and physics) cores and shells. The interest in such complex structures was provoked by their potential applications in the coating and painting industry (latexes), as supports for catalysts in polymer industry, or as nano-containers and transporters for genes or drug delivery. The aim of this study was the synthesis, characterization and further application of core-shell macromolecules possessing a hydrophobic stiff core (polyphenylene dendrimers) surrounded with a hydrophilic, soft, covalently bonded polymer shell (poly(ethylene oxide) and its copolymers). The requirements for such complex substances were that they should be well-defined in terms of molecular weight (narrow molecular weight distribution) and in molecular structure. The preparation of core-shell molecules containing dendrimer as a core was possible via two synthetic routs: “grafting-onto” and “grafting-from”. The resulting core-shell macromolecules possessed narrow polydispersity as guaranteed by the excellent structural and functional definition of the dendrimer and the narrow polydispersity of the PEO, PS-b-PEO and PI-b-PEO attached to the dendrimer surface. Additional investigation of the size of the particles indicated a relation between both the length and the number of the polymer chains and the hydrodynamic radius determined by Dynamic Light Scattering and Fluorescent Correlation Spectroscopy. Core-shell nano-particles were applied as metallocene supports in heterogeneous olefin polymerizations. Our results indicate that such catalyst systems, that have a size of at least one order of magnitude smaller than the used by now organic supports, could be very useful as model compounds for investigations on catalyst fragmentation and its influence on the product parameters.
Resumo:
N-Vinylamidderivate sind eine toxikologische unbedenkliche Monomerklasse. Mit diesen Monomeren wurden verschiedene technische Anwendungsgebiete im Bereich der Kern-Schale-Partikel und der fließfähigen und vernetzten Hydrogele untersucht. Kern-Schale-Partikel Für die Synthese von Kern-Schale-Partikeln wurden die N-Vinylamidderivate als Schalenpolymere auf kommerziellen Poly(styrol-stat.-butadien)-Kernpartikeln aufpolymerisiert. Mit Hilfe verschiedener Untersuchungsmethoden (DLS, SEM, FFF, Ultrazentrifuge) wurde die Kern-Schale-Strukturbildung und die Effizienz der Pfropfungsreaktion untersucht und eine erfolgreiche Synthese der Kern-Schale-Partikel belegt. Durch die gezielte Modifizierung des Schalenpolymers wurde ein kationisches, organisches Mikropartikelsystem entwickelt, charakterisiert und auf die Eignung als „Duales Flockungsmittel“ untersucht. Diese Versuche belegten die Eignung der modifizierten Kern-Schale-Partikel als „Duales Flockungsmittel“ und bieten eine Alternative zu kommerziell verwendeten Retentionsmitteln. Außerdem wurden die filmbildenden Eigenschaften der Poly(Nvinylformamid)-Kern-Schale-Dispersionen untersucht. Nach der Verfilmung der Dispersionen wurden transparente und harte Filme erhalten. Die Auswirkungen auf die mechanischen Eigenschaften der Filme wurden durch die Variation verschiedener Parameter eingehend studiert. Auf der Basis dieser Partikel wurden selbstvernetzende Dispersionssysteme entwickelt. Das P(VFA)-Schalenpolymer wurde teilweise hydrolysiert und die generierten freien Aminogruppen des Poly(N-vinylamins) durch eine Michael-Addition mit einem divinylfunktionalisierten Acrylat (Tetraethylenglykoldiacrylat) vernetzt. Untersuchungen zur mechanischen Beständigkeit der Filme zeigten bei geringen Vernetzungsgraden eine deutliche Optimierung der maximalen Zugbelastungen. Die Untersuchungen belegten, dass die Verwendung des selbstvernetzenden Dispersionssystems als Dispersion für eine Polymerbeschichtung möglich ist. Hydrogele Die Synthese von fließfähigen und quervernetzten Hydrogelen erfolgte auf der Basis verschiedener NVinylamide. Mit Hilfe geeigneter Vernetzer wurden feste Hydrogelplatten synthetisiert und für die Auftrennung von DNA-Sequenzen mit Hilfe der Gelelektrophorese verwendet. Scharfe und gute Auftrennung der verschiedenen „DNA-Ladder Standards“ wurden durch die Variation des Vernetzeranteils, der Polymerzusammensetzung, der angelegten Spannung und der Verweilzeit in der Gelelektrophoresekammer mit P(MNVA)-Hydrogelplatten erreicht. Fließfähige und quervernetzte Elektrolytgele auf Poly-(N-vinylamid)-Basis wurden in wartungsfreien pHElektroden eingesetzt. Die Eignung dieser Hydrogele wurden in Bezug auf die Anwendung eingehend charakterisiert. Elektroden befüllt mit Poly(N-vinylamid)-Gelen wurden in Dauerbelastungsexperimenten, direkt mit kommerziellen pHElektroden verglichen. Es konnte gezeigt werden, dass die fließfähigen und quervernetzten Poly-(N-vinylamid)-Elektrolytgele in ihren Messeigenschaften gleichwertige bzw. bessere Potentialstabilitäten aufweisen als kommerzielle Referenzelektroden. Die Hydrogele auf Basis von Poly(N-vinylamidderivaten) boten für die beiden getesteten Anwendungen eine toxikologisch unbedenkliche Alternative zu Poly(acrylamid)-Gelen. In dieser Arbeit konnten die durchgeführten Untersuchungen belegen, dass NVinylamide eine attraktive Monomerklasse ist, die erfolgreich in vielen technischen Anwendungen einsetzbar ist.
Resumo:
In this thesis, the self-assembled functional structure of a broad range of amphiphilic molecular transporters is studied. By employing paramagnetic probe molecules and ions, continuous-wave and pulse electron paramagnetic resonance spectroscopy reveal information about the local structure of these materials from the perspective of incorporated guest molecules. First, the transport function of human serum albumin for fatty acids is in the focus. As suggested by the crystal structure, the anchor points for the fatty acids are distributed asymmetrically in the protein. In contrast to the crystallographic findings, a remarkably symmetric entry point distribution of the fatty acid binding channels is found, which may facilitate the uptake and release of the guest molecules. Further, the metal binding of 1,2,3-triazole modified star-shaped cholic acid oligomers is studied. These biomimetic molecules are able to include and transport molecules in solvents of different polarity. A pre-arrangement of the triazole groups induces a strong chelate-like binding and close contact between guest molecule and metal ion. In absence of a preordering, each triazole moiety acts as a single entity and the binding affinity for metal ions is strongly decreased. Hydrogels based on N-isopropylacrylamide phase separate from water above a certain temperature. The macroscopic thermal collapse of these hydrogels is utilized as a tool for dynamic nuclear polarization. It is shown that a radical-free hyperpolarized solution can be achieved with a spin-labeled gel as separable matrix. On the nanoscale, these hydrogels form static heterogeneities in both structure and function. Collapsed regions protect the spin probes from a chemical decay while open, water-swollen regions act as catalytic centers. Similarly, thermoresponsive dendronized polymers form structural heterogeneities, which are, however, highly dynamic. At the critical temperature, they trigger the aggregation of the polymer into mesoglobules. The dehydration of these aggregates is a molecularly controlled non-equilibrium process that is facilitated by a hydrophobic dendritic core. Further, a slow heating rate results in a kinetically entrapped non-equilibrium state due to the formation of an impermeable dense polymeric layer at the periphery of the mesoglobule.
Resumo:
During the last years great effort has been devoted to the fabrication of superhydrophobic surfaces because of their self-cleaning properties. A water drop on a superhydrophobic surface rolls off even at inclinations of only a few degrees while taking up contaminants encountered on its way. rnSuperhydrophobic, self-cleaning coatings are desirable for convenient and cost-effective maintenance of a variety of surfaces. Ideally, such coatings should be easy to make and apply, mechanically resistant, and long-term stable. None of the existing methods have yet mastered the challenge of meeting all of these criteria.rnSuperhydrophobicity is associated with surface roughness. The lotus leave, with its dual scale roughness, is one of the most efficient examples of superhydrophobic surface. This thesis work proposes a novel technique to prepare superhydrophobic surfaces that introduces the two length scale roughness by growing silica particles (~100 nm in diameter) onto micrometer-sized polystyrene particles using the well-established Stöber synthesis. Mechanical resistance is conferred to the resulting “raspberries” by the synthesis of a thin silica shell on their surface. Besides of being easy to make and handle, these particles offer the possibility for improving suitability or technical applications: since they disperse in water, multi-layers can be prepared on substrates by simple drop casting even on surfaces with grooves and slots. The solution of the main problem – stabilizing the multilayer – also lies in the design of the particles: the shells – although mechanically stable – are porous enough to allow for leakage of polystyrene from the core. Under tetrahydrofuran vapor polystyrene bridges form between the particles that render the multilayer-film stable. rnMulti-layers are good candidate to design surfaces whose roughness is preserved after scratch. If the top-most layer is removed, the roughness can still be ensured by the underlying layer.rnAfter hydrophobization by chemical vapor deposition (CVD) of a semi-fluorinated silane, the surfaces are superhydrophobic with a tilting angle of a few degrees. rnrnrn
Resumo:
One of the basic concepts of molecular self-assembly is that the morphology of the aggregate is directly related to the structure and interaction of the aggregating molecules. This is not only true for the aggregation in bulk solution, but also for the formation of Langmuir films at the air/water interface. Thus, molecules at the interface do not necessarily form flat monomolecular films but can also aggregate into multilayers or surface micelles. In this context, various novel synthetic molecules were investigated in terms of their morphology at the air/water interface and in transferred films. rnFirst, the self-assembly of semifluorinated alkanes and their molecular orientation at the air/water interface and in transferred films was studied employing scanning force microscopy (SFM) and Kelvin potential force microscopy. Here it was found, that the investigated semifluorinated alkanes aggregate to form circular surface micelles with a diameter of 30 nm, which are constituted of smaller muffin-shaped subunits with a diameter of 10 nm. A further result is that the introduction of an aromatic core into the molecular structure leads to the formation of elongated surface micelles and thus implements a directionality to the self-assembly. rnSecond, the self-assembly of two different amphiphilic hybrid materials containing a short single stranded desoxyribonucleic acid (DNA) sequence was investigated at the air/water interface. The first molecule was a single stranded DNA (11mer) molecule with two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases at the terminal 5'-end of the oligonucleotide sequence. Isotherm measurements revealed the formation of semi-stable films at the air/water interface. SFM imaging of films transferred via Langmuir-Blodgett technique supported this finding and indicated mono-, bi- and multilayer formation, according to the surface pressure applied upon transfer. Within these films, the hydrophilic DNA sequence was oriented towards air covering 95% of the substrate.rnSimilar results were obtained with a second type of amphiphile, a DNA block copolymer. Furthermore, the potential to perform molecular recognition experiments at the air/water interface with these DNA hybrid materials was evaluated.rnThird, polyglycerol ester molecules (PGE), which are known to form very stable foams, were studies. Aim was to elucidate the molecular structure of PGE molecules at the air/water interface in order to comprehend the foam stabilization mechanism. Several model systems mimicking the air/water interface of a PGE foam and methods for a noninvasive transfer were tested and characterized by SFM. It could be shown, that PGE stabilizes the air/water interface of a foam bubble by formation of multiple surfactant layers. Additionally, a new transfer technique, the bubble film transfer was established and characterized by high speed camera imaging.The results demonstrate the diversity of structures, which can be formed by amphiphilic molecules at the air/water interface and after film transfer, as well as the impact of the chemical structure on the aggregate morphology.