7 resultados para Well-Posed Optimization Problems
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die vorliegende Arbeit behandelt Vorwärts- sowie Rückwärtstheorie transienter Wirbelstromprobleme. Transiente Anregungsströme induzieren elektromagnetische Felder, welche sogenannte Wirbelströme in leitfähigen Objekten erzeugen. Im Falle von sich langsam ändernden Feldern kann diese Wechselwirkung durch die Wirbelstromgleichung, einer Approximation an die Maxwell-Gleichungen, beschrieben werden. Diese ist eine lineare partielle Differentialgleichung mit nicht-glatten Koeffizientenfunktionen von gemischt parabolisch-elliptischem Typ. Das Vorwärtsproblem besteht darin, zu gegebener Anregung sowie den umgebungsbeschreibenden Koeffizientenfunktionen das elektrische Feld als distributionelle Lösung der Gleichung zu bestimmen. Umgekehrt können die Felder mit Messspulen gemessen werden. Das Ziel des Rückwärtsproblems ist es, aus diesen Messungen Informationen über leitfähige Objekte, also über die Koeffizientenfunktion, die diese beschreibt, zu gewinnen. In dieser Arbeit wird eine variationelle Lösungstheorie vorgestellt und die Wohlgestelltheit der Gleichung diskutiert. Darauf aufbauend wird das Verhalten der Lösung für verschwindende Leitfähigkeit studiert und die Linearisierbarkeit der Gleichung ohne leitfähiges Objekt in Richtung des Auftauchens eines leitfähigen Objektes gezeigt. Zur Regularisierung der Gleichung werden Modifikationen vorgeschlagen, welche ein voll parabolisches bzw. elliptisches Problem liefern. Diese werden verifiziert, indem die Konvergenz der Lösungen gezeigt wird. Zuletzt wird gezeigt, dass unter der Annahme von sonst homogenen Umgebungsparametern leitfähige Objekte eindeutig durch die Messungen lokalisiert werden können. Hierzu werden die Linear Sampling Methode sowie die Faktorisierungsmethode angewendet.
Resumo:
When designing metaheuristic optimization methods, there is a trade-off between application range and effectiveness. For large real-world instances of combinatorial optimization problems out-of-the-box metaheuristics often fail, and optimization methods need to be adapted to the problem at hand. Knowledge about the structure of high-quality solutions can be exploited by introducing a so called bias into one of the components of the metaheuristic used. These problem-specific adaptations allow to increase search performance. This thesis analyzes the characteristics of high-quality solutions for three constrained spanning tree problems: the optimal communication spanning tree problem, the quadratic minimum spanning tree problem and the bounded diameter minimum spanning tree problem. Several relevant tree properties, that should be explored when analyzing a constrained spanning tree problem, are identified. Based on the gained insights on the structure of high-quality solutions, efficient and robust solution approaches are designed for each of the three problems. Experimental studies analyze the performance of the developed approaches compared to the current state-of-the-art.
Resumo:
The focus of this thesis is to contribute to the development of new, exact solution approaches to different combinatorial optimization problems. In particular, we derive dedicated algorithms for a special class of Traveling Tournament Problems (TTPs), the Dial-A-Ride Problem (DARP), and the Vehicle Routing Problem with Time Windows and Temporal Synchronized Pickup and Delivery (VRPTWTSPD). Furthermore, we extend the concept of using dual-optimal inequalities for stabilized Column Generation (CG) and detail its application to improved CG algorithms for the cutting stock problem, the bin packing problem, the vertex coloring problem, and the bin packing problem with conflicts. In all approaches, we make use of some knowledge about the structure of the problem at hand to individualize and enhance existing algorithms. Specifically, we utilize knowledge about the input data (TTP), problem-specific constraints (DARP and VRPTWTSPD), and the dual solution space (stabilized CG). Extensive computational results proving the usefulness of the proposed methods are reported.
Resumo:
„Risikomaße in der Finanzmathematik“ Der Value-at -Risk (VaR) ist ein Risikomaß, dessen Verwendung von der Bankenaufsicht gefordert wird. Der Vorteil des VaR liegt – als Quantil der Ertrags- oder Verlustverteilung - vor allem in seiner einfachen Interpretierbarkeit. Nachteilig ist, dass der linke Rand der Wahrscheinlichkeitsverteilung nicht beachtet wird. Darüber hinaus ist die Berechnung des VaR schwierig, da Quantile nicht additiv sind. Der größte Nachteil des VaR ist in der fehlenden Subadditivität zu sehen. Deswegen werden Alternativen wie Expected Shortfall untersucht. In dieser Arbeit werden zunächst finanzielle Risikomaße eingeführt und einige ihre grundlegenden Eigenschaften festgehalten. Wir beschäftigen uns mit verschiedenen parametrischen und nichtparametrischen Methoden zur Ermittlung des VaR, unter anderen mit ihren Vorteilen und Nachteilen. Des Weiteren beschäftigen wir uns mit parametrischen und nichtparametrischen Schätzern vom VaR in diskreter Zeit. Wir stellen Portfoliooptimierungsprobleme im Black Scholes Modell mit beschränktem VaR und mit beschränkter Varianz vor. Der Vorteil des erstens Ansatzes gegenüber dem zweiten wird hier erläutert. Wir lösen Nutzenoptimierungsprobleme in Bezug auf das Endvermögen mit beschränktem VaR und mit beschränkter Varianz. VaR sagt nichts über den darüber hinausgehenden Verlust aus, während dieser von Expected Shortfall berücksichtigt wird. Deswegen verwenden wir hier den Expected Shortfall anstelle des von Emmer, Korn und Klüppelberg (2001) betrachteten Risikomaßes VaR für die Optimierung des Portfolios im Black Scholes Modell.
Resumo:
For the advancement of spinelectronicsmuch importance is attached to Heusler compounds. Especially compounds with the stoichiometry Co2YZ are supposed to exhibit a large asymmetry between majority and minority electrons at the Fermi edge. Ideally, only majority states are present. This property leads to high magnetoresistive effects. However, the experimental results available at present fall behind the expectations. In particular, a strong reduction of the spin asymmetry with increasing temperature is problematic. For this reason,rnthe investigation of further representatives of this material class as well as optimization of their deposition is required. Therefore, during the course of this work thin Heusler films with the composition Co2Cr0.6Fe0.4Al and Co2Mn1−xFexSi were fabricated. At first, this was accomplished by sputter deposition, which is the standard technique for the preparation of thin Heuslerrnfilms. It resulted also here in samples with high structural order. On the other hand, these films exhibit only a reduced magnetic moment. To improve this situation, a laser ablation system was constructed. The resulting film deposition under ultra-high vacuum led to a clear improvement especially of the magnetic properties. In addition to the improved deposition conditions, this method allowed the flexible variation of the film stoichiometry as well. This possibility was successfully demonstrated in this work by deposition of epitaxial Co2Mn1−xFexSi films. The availableness of these high quality quaternary alloys allowed the systematic investigation of their electronic properties. Band structure calculations predict that the substitution of Mn by Fe lead to a shift of the Fermi energy over the minority energy gap, whereas the density of states remains nearly unchanged. This prediction could by tested by electronic transport measurements. Especially the normal Hall effect, which was measured at these samples, shows a transition from a hole-like charge transport in Co2MnSi to an electron-like transport in Co2FeSi. This is in accordance with corresponding band structure calculations as well as with comparative XMCD experiments. Furthermore, the behavior of the anomalous Hall effect was studied. Here it could be seen, that the effect is influenced by two mechanisms: On the one hand an intrinsic contribution, caused by the topology of the Fermi surface and on the other hand by temperature dependent impurity scattering. These two effects have an opposing influence on the anomalous Hall effect. This can lead to a sign reversal of the anomalous contribution. This behavior has been predicted just recently and was here systematically investigated for the first time for Heusler compounds.
Resumo:
Geometric packing problems may be formulated mathematically as constrained optimization problems. But finding a good solution is a challenging task. The more complicated the geometry of the container or the objects to be packed, the more complex the non-penetration constraints become. In this work we propose the use of a physics engine that simulates a system of colliding rigid bodies. It is a tool to resolve interpenetration conflicts and to optimize configurations locally. We develop an efficient and easy-to-implement physics engine that is specialized for collision detection and contact handling. In succession of the development of this engine a number of novel algorithms for distance calculation and intersection volume were designed and imple- mented, which are presented in this work. They are highly specialized to pro- vide fast responses for cuboids and triangles as input geometry whereas the concepts they are based on can easily be extended to other convex shapes. Especially noteworthy in this context is our ε-distance algorithm - a novel application that is not only very robust and fast but also compact in its im- plementation. Several state-of-the-art third party implementations are being presented and we show that our implementations beat them in runtime and robustness. The packing algorithm that lies on top of the physics engine is a Monte Carlo based approach implemented for packing cuboids into a container described by a triangle soup. We give an implementation for the SAE J1100 variant of the trunk packing problem. We compare this implementation to several established approaches and we show that it gives better results in faster time than these existing implementations.
Resumo:
In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.