4 resultados para Van Nuemann algebras.

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arnt van Tricht, gest. 1570, unterhielt bis in die späten 50er Jahre des 16. Jahrhunderts, wahrschein-lich aus Antwerpen kommend, in Kalkar am Niederrhein eine sehr erfolgreiche Werkstatt. Die bis dahin vorherrschende spätgotische Formensprache der langjährig ansässigen Bildhauer löste er durch die der Renaissance ab, führte jedoch deren Arbeitsfelder und Materialwahl weiter. Arnt van Tricht schuf Arbeiten sowohl religiöser als auch profaner Natur innerhalb des Gebiets der damals sehr bedeutenden Vereinigten Herzogtümer Kleve-Mark-Jülich-Berg und Geldern. Seine wohlhabenden Auftraggeber entstammten dem Klerus, der Bürgerschaft und dem Adel.rnIm Rahmen der Arbeit zeigte sich, dass sich für den Künstler die Verlegung der herzoglichen Residenz nach Düsseldorf und der wirtschaftliche Niedergang der Region letztlich stärker auswirkte als die religiösen Veränderungen durch die Reformation.rnArnt van Tricht schuf die meisten seiner religiösen Bildwerke für die Stiftskirche St. Viktor in Xanten, die durch die Bürgerschaft ausgestattete Pfarrkirche von St. Nicolai in Kalkar und umliegende Gemeinden. Einzelne Stücke sind, wohl über familiäre Verflechtungen vermittelt, in einem weiteren Radius zu finden. Van Tricht arbeitete Schnitzretabel mitsamt ihrer ornamentalen und figuralen Aus-stattung sowie Skulpturen(-gruppen) in Eichenholz. Daneben finden sich im Werk zahlreiche in Sandstein gearbeitete Skulpturen, die teilweise an Pfeilern und Portalen der Kirchen architektur-gebunden sind. Neben diesen rundplastischen Werken schuf Arnt van Tricht eine große Anzahl an steinernen Reliefarbeiten. Hierbei nehmen die überwiegend für die lokalen Kanoniker gearbeiteten Epitaphien mit biblischem Reliefbild in Ornamentrahmen den größten Teil ein.rnEin zweiter, gleichwertiger Werkkomplex, überwiegend in Sandstein gearbeitet, ist profaner Natur und fällt durch die Größe der Aufträge ins Gewicht. Arnt van Tricht war an einigen groß angelegten Modernisierungsprojekten an Stadthäusern und Kastellen des lokalen Adels beschäftigt. Für mehrere aufwendig gestaltete Fassadendekorationen arbeitete er Architekturglieder mit figürlicher Darstellung oder Ornament, Büsten und freiplastische Skulpturen. Arnt van Tricht war aber auch an der Aus-gestaltung der Innenräume beteiligt. Aufwendig skulptierte und reliefverzierte Kaminverkleidungen stehen dabei neben reduzierteren Arbeiten für offensichtlich weniger repräsentative Räume. Neben in Eichenholz gearbeiteter Vertäfelung schuf Arnt van Tricht hölzerne figurale Handtuchhalter. Diese zeigen, wie auch die Reliefbilder der Kamine, die darüber hinaus Wappen und Porträts der Bauherren aufnehmen, eine religiöse oder profane, auch antikisierende Thematik, bei der ein moralisierender Unterton mitschwingt.rnIn dieser Arbeit werden erstmals alle Werkstücke des Künstlers zusammengeführt dargestellt, so dass ein Werkkatalog mit einem Überblick über das sehr breit gefächerte Spektrum des Opus Arnt van Trichts vorliegt. Häufig durch bloße Nennung mit Arnt van Tricht in Verbindung gebrachte Arbeiten werden bewertet und die Zu- oder Abschreibung begründet. Auch können einige Stücke neu zugeschrieben werden.