5 resultados para Transmission system operators

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cannabinerge Substanzen können das Verhalten in einer dosisabhängigen, aber biphasischen Weise beeinflussen. Eine Erklärung für diese Art der Effekte könnte die Verteilung des CB1 Rezeptors auf verschiedenen Neuronentypen sein. CB1 Rezeptoren in glutamatergen und GABAergen Neuronen sind hier besonders wichtig, da die entsprechenden Neurotransmitter als Gegenspieler die neuronale Erregung kontrollieren. Spezifische Deletion des CB1 Rezeptor-Gens von einer der beiden Populationen führte zu gegensätzlichen Phenotypen, genauer gesagt, einem erniedrigten, bzw. einem gesteigerten Interaktiondrang. Tiere, bei denen der CB1 Rezeptor ausschließlich in striatalen, GABAergen „Medium Spiny“ Neuronen deletiert wurde, zeigten keinen veränderten Phänotyp. Dies legt nahe, dass der CB1 Rezeptor in kortikalen glutamatergen und GABAergen Neuronen für einen ausgeglichenen Interaktionsdrang entscheidend ist (siehe Kapitel 3).rnDiese dosisabhängigen, biphasischen Effekte auf das Verhalten können auch im „Forced Swim Test“ (FST) beobachtet werden. Ein möglicher Mechanismus, durch den Cannabinoide das Stressverhalten beeinflussen können, wäre die Regulierung der Monoaminausschüttung. Um die Abhängigkeit der Cannabinoideffekte von der Serotonintransmission zu untersuchen, wurden Dosen von CB1 Rezeptoragonisten und –antagonisten mit antidepressiv-induzierenden Eigenschaften bei gleichzeitiger Inhibition der Serotonintransmission im FST getestet. Die Ergebnisse zeigten, dass lediglich der Agonisteffekt durch die Inhibition der Serotoninauschüttung beeinflusst wird. Zusätzlich konnte die Abhängigkeit des Antagonisteneffekts von funktionsfähigen GABAergen CB1 Rezeptoren nachweisen werden. Interessanter Weise konnte der durch die Deletion von glutamatergen CB1 Rezeptoren induzierte Phänotyp durch Inhibition der Serotoninausschüttung blockiert werden (siehe Kapitel 4).rnEin indirekter Einfluss auf Serotoninausschüttung scheint also wahrscheinlich zu sein. Bis jetzt blieb jedoch unklar, inwieweit cannabinerge Substanzen direkt auf serotonerge Neuronen wirken können. Im Jahr 2007 konnte unsere Gruppe die Expression des CB1 Rezeptors in serotonergen Neuronen auf mRNA- und Proteinebene nachweisen. Die Züchtung und Analyse einer mutanten Mauslinie, in welcher der CB1-Rezeptor spezifisch in serotonergen Neuronen ausgeschaltet wurde, zeigte bei männlichen Tieren eine schwache, aber signifikante Verhaltensänderungen, die durch soziale Stimuli und lebensbedrohlichen Situationen ausgelöst wurde. So ist es erstmals gelungen nachzuweisen, dass serotonerge CB1-Rezeptoren eine physiologische Relevanz besitzen (siehe Kapitel 5).rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on the design and characterization of a novel, artificial minimal model membrane system with chosen physical parameters to mimic a nanoparticle uptake process driven exclusively by adhesion and softness of the bilayer. The realization is based on polymersomes composed of poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PMDS-b-PMOXA) and nanoscopic colloidal particles (polystyrene, silica), and the utilization of powerful characterization techniques. rnPDMS-b-PMOXA polymersomes with a radius, Rh ~100 nm, a size polydispersity, PD = 1.1 and a membrane thickness, h = 16 nm, were prepared using the film rehydratation method. Due to the suitable mechanical properties (Young’s modulus of ~17 MPa and a bending modulus of ~7⋅10-8 J) along with the long-term stability and the modifiability, these kind of polymersomes can be used as model membranes to study physical and physicochemical aspects of transmembrane transport of nanoparticles. A combination of photon (PCS) and fluorescence (FCS) correlation spectroscopies optimizes species selectivity, necessary for a unique internalization study encompassing two main efforts. rnFor the proof of concepts, the first effort focused on the interaction of nanoparticles (Rh NP SiO2 = 14 nm, Rh NP PS = 16 nm; cNP = 0.1 gL-1) and polymersomes (Rh P = 112 nm; cP = 0.045 gL-1) with fixed size and concentration. Identification of a modified form factor of the polymersome entities, selectively seen in the PCS experiment, enabled a precise monitor and quantitative description of the incorporation process. Combining PCS and FCS led to the estimation of the incorporated particles per polymersome (about 8 in the examined system) and the development of an appropriate methodology for the kinetics and dynamics of the internalization process. rnThe second effort aimed at the establishment of the necessary phenomenology to facilitate comparison with theories. The size and concentration of the nanoparticles were chosen as the most important system variables (Rh NP = 14 - 57 nm; cNP = 0.05 - 0.2 gL-1). It was revealed that the incorporation process could be controlled to a significant extent by changing the nanoparticles size and concentration. Average number of 7 up to 11 NPs with Rh NP = 14 nm and 3 up to 6 NPs with Rh NP = 25 nm can be internalized into the present polymersomes by changing initial nanoparticles concentration in the range 0.1- 0.2 gL-1. Rapid internalization of the particles by polymersomes is observed only above a critical threshold particles concentration, dependent on the nanoparticle size. rnWith regard possible pathways for the particle uptake, cryogenic transmission electron microscopy (cryo-TEM) has revealed two different incorporation mechanisms depending on the size of the involved nanoparticles: cooperative incorporation of nanoparticles groups or single nanoparticles incorporation. Conditions for nanoparticle uptake and controlled filling of polymersomes were presented. rnIn the framework of this thesis, the experimental observation of transmembrane transport of spherical PS and SiO2 NPs into polymersomes via an internalization process was reported and examined quantitatively for the first time. rnIn a summary the work performed in frames of this thesis might have significant impact on cell model systems’ development and thus improved understanding of transmembrane transport processes. The present experimental findings help create the missing phenomenology necessary for a detailed understanding of a phenomenon with great relevance in transmembrane transport. The fact that transmembrane transport of nanoparticles can be performed by artificial model system without any additional stimuli has a fundamental impact on the understanding, not only of the nanoparticle invagination process but also of the interaction of nanoparticles with biological as well as polymeric membranes. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.