6 resultados para Thin layers
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this manner should be connected to a two-photon processes triggered by these structures; obtaining first insight into plasmon-mediated enhancement phenomena. An even simpler and faster approach to produce plasmonic structures than that for the crescents was tested. Metallic nanodiscs and nanoellipses were produced by means of nanosphere lithography, extending a procedure reported in the literature to new shapes and optical properties. The optical properties of these particles were characterized by extinction spectroscopy and compared to results from the literature. Their major advantage is that they present a polarization-dependent response, like the nanocrescents, but are much simpler to fabricate, and the resonances can be tailored in the visible with relative ease. The sensing capabilities of the metallic nanodiscs were explored in the same manner as for the nanocrescents, meaning their response to thin layers and to bio-recognition events on their surface. The sensitivity of these nanostructures to thin films proved to be lower than that of the crescents, though in the same order of magnitude. Experimental information about the near field extension for the Au nanodiscs of different sizes was also extracted from these measurements. Further resonance-tailoring approaches based on electrochemical deposition of metals on the nanodiscs were explored, as a means of modifying plasmon resonances by changing surface properties of the nanoparticles. First results on these experiments would indicate that the deposition of Ag on Au on a submonolayer coverage level can lead to important blue-shifts in the resonances, which would open a simple way to tailor resonances by changing material properties in a local manner.
Resumo:
Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.
Resumo:
In der vorliegenden Arbeit werden Experimente beschrieben, die zu einem vertieften Verständnis fundamentaler Prozesse bei der elektrochemischen Herstellung von Dünnschichten, sog. Targets, für kernphysikalische und -chemische Studien führten. Targets wurden mittels 'Molecular Plating' (MP) hergestellt, indem eine Elektrodeposition aus organischem Medium in der Regel bei konstantem Strom in Zwei-Elektroden-Zellen. Die Resultate erlaubten, optimierte Herstellungs-bedingungen zu ermitteln, welche die Produktion deutlich verbesserter Targets erlaubten. MP bei konstantem Strom ist ein massentransportkontrollierter Prozess. Der angelegte Strom wird durch einen konstanten Fluss elektroaktiver Spezies zur Kathode – auf der die Schicht wächst – und Anode aufrechterhalten. Die Untersuchungen zeigten, dass das Zellenpotential des Elektrodepositionsystems immer durch den Ohm'schen Spannungsabfall auf Grund des Widerstandes der verwendeten Lösung dominiert wurde. Dies erlaubte die Herleitung einer Beziehung zwischen dem Zellenpotential und der Konzentration der elektroaktiven Spezies. Die Beziehung erlaubt die Erklärung des gemessenen zeitlichen Verlaufs des Zellenpotentials während der Abscheidung als Funktion der Elektrolytkonzentration. Dies dient als Basis, auf der nun ein umfassenderes Bild der Prozesse, die für die charakteristischen Minima im Potentialverlauf einer Abscheidung verantwortlich sind, gewonnen werden kann. Es konnte gezeigt werden, dass die Minima mit der fast vollständigen Entfernung (durch Abscheidung) der aus einem gelösten Salz erzeugten Nd-Ionen korrespondieren. Die abgeschiedene Spezies wurde als Nd3+ identifiziert, vermutlich als Carboxylat, Oxid oder Hydroxid, was auf Grund der hohen negative Werte des Standardredoxpotentials der Lanthanide verständlich erscheint. Von den vorliegenden elektroaktiven Spezies tragen die Nd3+ Ionen nur zu knapp 20% zum Gesamtstrom bei. Durch Elektrolyse tragen auch die Lösungsmittelkomponenten zu diese Strom bei. Die Gegenwart von elektrolysiertem Lösungsmittel wurde in Analysen der Dünnschichten bestätigt. Diese waren immer mit chemi- und physisorbierten Lösungsmittelmolekülen bedeckt. Die Analyse der Dünnschichten zeigte, dass die Oberflächen von einem furchenartiges Netz durchzogen waren, und dass diese während des Trocknen der Schichten nach dem MP entstanden. Ob die Schichten an Luft oder in inerter Atmosphäre trockneten, hatte keinen Einfluss. Es wurden Experimente mit mehreren Lösungsmitteln durchgeführt, die sich deutlich in ihren physikalischen Eigenschaften, v.a. dem Siedepunkt, unterschieden. Furchenfreie Dünnschichten konnten insbesondere bei MP in N,N-dimethylformamide (DMF) erzeugt werden. Die Verwendung von DMF in Kombination mit einer Abscheidung auf sehr glatten Substraten erlaubte die Produktion von sehr homogenen, glatten und defektfreien Schichten. Diese waren vermutlich geringeren inneren Spannungen während des Trocknens ausgesetzt, als Schichten auf raueren Substraten oder solche, die aus flüchtigeren Lösungsmitteln hergestellt wurden. Die Oberflächenrauigkeit des Substrats und das gewählte Lösungsmittel wurden so als Schlüsselfaktoren für die Produktion hochqualitativer Schichten identifiziert. Es konnte gezeigt werden, dass mit MP eine sehr effiziente Methode zur Herstellung homogener Schichten mit exzellenter Ausbeute ist. In weiteren Experimenten mit dem primordialen Alpha-Emitter 147Sm als Modellisotop wurde die Eignung solcher Schichten als Alpha-Quelle untersucht. Sowohl die Energieauflösung als auch der Anteil der Alpha-Teilchen, die den Detektor erreichten, waren von den Quelleneigenschaften abhängig. Die Effekte wurden verschiedenen Variablen der Dünnschicht zugeordnet, welche die Alpha-Spektren beeinflussten. Dominant war die Wahl des Lösungsmittels und die Rauigkeit des Substrats. Dies beeinflusste Schichtdicke und -morphologie sowie die Art des Schichtwachstums und veränderte die Detektionseffizienz in Alpha-Messungen bis zu 15%. Nur homogene, ebene Schichten, die aus DMF auf glatten Substraten abgeschieden wurden, eignen sich optimal als Alpha-Quelle. Die gewonnenen Ergebnisse erlauben die optimierte Herstellung nuklearer Targets durch MP. Künftige Anwendungen beinhalten insbesondere die Herstellung von Targets für neutroneninduzierte Spaltexperimente und untergrundarmeAlpha-Messungen sehr kleiner Aktivitäten.
Resumo:
Nanoscience aims at manipulating atoms, molecules and nano-size particles in a precise and controlled manner. Nano-scale control of the thin film structures of organic/polymeric materials is a prerequisite to the fabrication of sophisticated functional devices. The work presented in this thesis is a compilation of various polymer thin films with newly synthesized functional polymers. Cationic and anionic LC amphotropic polymers, p-type and n-type semiconducting polymers with triarylamine, oxadiazole, thiadiazole and triazine moieties are suitable materials to fabricate multilayers by layer-by-layer (LBL) self-assembly with a well defined internal structure. The LBL assembly is the ideal processing technique to prepare thin polymer film composites with fine control over morphology and composition at nano-scale thickness, which may have applications in photo-detectors, light-emitting diodes (LEDs), displays and sensors, as well as in solar cells. The multilayer build-up was investigated with amphotropic LC polymers individually by solution-dipping and spin-coating methods; they showed different internal orders with respect to layering and orientation of the mesogens, as a result of the liquid crystalline phase. The synthesized p-type and n-type semiconducting polymers were examined optically and electrochemically, suggesting that they are favorably promising as hole-(p-type) or electron-(n-type) transport materials in electronic and optoelectronic devices. In addition, we report a successful film deposition of polymers by the vacuum deposition method. The vapor deposition method provides a clean environment; it is solvent free and well suited to sequential depositions in hetero-structured multilayer system. As the potential applications, the fabricated polymer thin films were used as simple electrochromic films and also used as hole transporting layers in LEDs. Electrochemical and electrochromic characterizations of assembled films reveal that the newly synthesized polymers give rise to high contrast ratio and fast switching electrochromic films. The LEDs with vacuum deposited films show dramatic improvements in device characteristics, indicating that the films are promising as hole transporting layers. These are the result of not only the thin nano-scale film structures but also the combination with the high charge carrier mobility of synthesized semiconducting polymers.
Resumo:
X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn
Resumo:
Die Kontroverse über den Glasübergang im Nanometerbereich, z. B. die Glas¬über¬gangs-temperatur Tg von dünnen Polymerfilmen, ist nicht vollständig abgeschlossen. Das dynamische Verhalten auf der Nanoskala ist stark von den einschränkenden Bedingungen abhängig, die auf die Probe wirken. Dünne Polymerfilme sind ideale Systeme um die Dynamik von Polymerketten unter der Einwirkung von Randbedingungen zu untersuchen, wie ich sie in dieser Arbeit variiert habe, um Einblick in dieses Problem zu erhalten.rnrnResonanzverstärkte dynamische Lichtstreuung ist eine Methode, frei von z.B. Fluoreszenzmarkern, die genutzt werden kann um in dünnen Polymerfilmen dynamische Phänomene