9 resultados para Stress conditions

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Das WSCP (water-soluble chlorophyll protein) der Brassicaceen ist das einzig bekannte Chlorophyll-bindende Protein, welches keine Carotinoide bindet. Es ist ein wasserlösliches, ca. 80 kDa großes Homotetramer mit 1-4 gebundenen Chlorophyllen. Das Protein ist äußerst stabil und vermag die gebundenen Chlorophylle vor Photooxidation zu schützen. Seine Funktion in der Pflanze ist bis heute ein Rätsel und sollte in dieser Arbeit zusammen mit seinen biochemischen Eigenschaften weiter aufgeklärt werden. Es wurden Versuche durchgeführt mit nativem und rekombinantem WSCP aus Blumenkohl (BoWSCP bzw. BoWSCPhis) und aus Arabidopsis thaliana (AtWSCP bzw. AtWSCPhis). Die Expressionsausbeute von BoWSCPhis konnte verbessert werden und zusätzlich wurde die Rekonstitutionsmethode für das rekombinante WSCP optimiert, sodass das pigmentierte Protein mit hoher Ausbeute und großer Reinheit gewonnen werden konnte. Zudem wurde ein neuer WSCP-Klon hergestellt, mBoWSCPhis, der in seiner Sequenz dem maturen nativen BoWSCP entspricht und weitaus weniger Aggregationsprobleme zeigte als BoWSCPhis. Weiterführende Versuche zur Stabilität und dem Oligomerisierungsgrad von WSCP haben die neue Erkenntnis erbracht, dass die Phytolschwänze der von WSCP gebundenen Chlorophylle zwar essentiell sind für die Stabilität von WSCP-Oligomeren, nicht aber für die Oligomerisierung selbst, wie es in der Literatur bislang postuliert wurde. Zusätzlich zu ihrer außerordentlichen Hitzestabilität erwiesen sich die Chl-WSCP-Komplexe als stabil in einem breiten pH-Spektrum. AtWSCPhis besaß eine vergleichbare Stabilität, und auch das Oligomerisierungsverhalten zeigte Ähnlichkeiten zu BoWSCPhis. Im Rahmen einer Forschungskooperation mit dem Institut für Optik und Atomare Physik der TU Berlin wurden zeitaufgelöste Absorptionsspektren sowie Tieftemperatur-Fluoreszenzspektren an Chl-WSCP-Komplexen gemessen. Die Ergebnisse zeigten deutlich, dass die WSCP-gebundenen Chlorophylle excitonisch gekoppelt sind und wiesen zudem auf unterschiedliche Chl-Bindungsmodi hin. Aufgrund seines einfachen Aufbaus und seines geringen Chlorophyllgehalts hat sich WSCP bei diesen Versuchen als sehr geeignetes Modellsystem erwiesen, um Messungen zur Chlorophyllbindung mit Vorhersagen aus theoretischen Modellen zu vergleichen. Bei den Experimenten zur biologischen Funktion wurden einerseits Arabidopsis thaliana WSCP-„knock-out“-Pflanzen unter verschiedenen Bedingungen charakterisiert, andererseits wurden Experimente mit rekombinantem WSCP durchgeführt, um eine mögliche Interaktion mit anderen Proteinen zu detektieren. Die vegetativen Stadien der Mutante zeigten keinen Phänotyp; das native Arabidopsis-WSCP konnte später bei der Wildtyp-Pflanze ausschließlich in jungen Schoten lokalisiert werden, was eine Erklärung hierfür lieferte. Rekombinantes WSCP konnte Chlorophylle aus nativem LHCII entfernen, eine Interaktion mit Chlorophyllase konnte jedoch nicht nachgewiesen werden; daher konnte auch die Hypothese, WSCP sei ein Chl-Carrier beim Chl-Abbau, nicht untermauert werden. Bei den durchgeführten Enzym-Assays wurde eine geringfügige Inhibition der Cysteinprotease Papain beobachtet, aber keine Inhibition der Serinprotease Trypsin, obwohl Blumenkohl-WSCP N-proximal das Motiv der Künitz-Proteaseinhibitoren besitzt. Die Frage nach der biologischen Funktion von WSCP bleibt also weiterhin offen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sowohl in Synechocystis sp. PCC 6803 als auch in anderen Cyanobakterien konnten multiple DnaJ-Proteine nachgewiesen werden, deren Funktion jedoch noch weitestgehend unverstanden ist. Im Rahmen dieser Arbeit wurden die Funktionen der multiplen DnaJ-Proteine von Synechocystis sp. charakterisiert. Das DnaJ-Protein, Sll0897 gehört aufgrund seiner Domänenstruktur zu den Typ I-Proteinen, Slr0093 und Sll1933 zu den Typ II-Proteinen und Sll0909, Sll1011, Sll1384 und Sll1666 zu den Typ III DnaJ-Proteinen. Durch Komplementationsstudien des E. coli ΔdnaJ-Stammes OD259 konnte eine Komplementation des Wachstumsdefekts bei höheren Temperaturen durch die Proteine Slr0093 und Sll0897 gezeigt werden. In Synechocystis war eine komplette Disruption von sll1933 nicht möglich, weshalb das Protein Sll1933 unter normalen Wachstumsbedingungen essentiell ist. Doppelte Insertionmutationen waren lediglich bei der Kombination der Gene sll0909 und sll1384 möglich. Untersuchungen des Wachstumsverhaltens der dnaJ-Disruptions-stämme unter Hitze- und Kältestressbedingungen zeigten, dass das Protein Sll0897 eine wichtige Funktion bei der Stressantwort in Synechocystis besitzt und unter Hitzestressbedingungen essentiell ist. Eine vollständige Deletion des Gens sll0897 war Synechocystis sp. bereits unter normalen Wachstumsbedingungen nicht möglich. Bei den für ein Wachstum mindestens notwendigen Domänen des Sll0897 handelt es sich um die charakteristische J-Domäne und die Glycin-Phenylalanin-reiche Domäne. Unter Hitzestressbedingungen ist das Volllängen-Protein Sll0897 für ein Wachstum essentiell. rnNeben den in vivo Wachstumsexperimenten wurde eine Methode zur heterologen Expression der sieben DnaJ-Proteine in E. coli und einer nativen Reinigung von Slr0093, Sll0897, Sll0909 und Sll1666 etabliert. Untersuchungen zur Thermostabilität der gereinigten Proteine zeigten für das Slr0093 und Sll1666 einen reversiblen Prozess, wodurch sie auch nach dem Hitzestress noch als Faltungshelfer fungieren können. Bei den Proteinen Sll0897 und Sll0909 ist der Prozess jedoch nicht reversibel, so dass sie nach Hitzestresseinwirkung neu synthetisiert oder durch Chaperoneinwirkung korrekt gefaltet werden müssen. Die Affinitäts-„Pull-Down“ Analysen lieferten keine klaren Hinweise auf die DnaK-Interaktionspartner der Proteine Slr0093, Sll0897, Sll0909 und Sll1666, weshalb weitere Untersuchungen notwendig sind. Mit Hilfe der Gelfiltrationsanalysen konnten die errechneten molaren Massen der Proteine Slr0093 und Sll1666 bestätigt und beide Proteine in einer monomeren Form nachgewiesen werden. Die DnaJ-Proteine Sll0897 und Sll0909 konnten in zwei oligomeren Zuständen detektiert werden. Analysen der ATPase-Aktivität des DnaK2-Proteins alleine und des DnaK2-Proteins zusammen mit den DnaJ-Proteinen Slr0093, Sll0897, Sll0909 und Sll1666 zeigten eine Steigerung der ATP-Hydrolyserate bei der Interaktion von DnaK und DnaJ, wobei Sll0897 die größte Steigerung der ATPase-Aktivität des DnaK2 induzierte.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Proteinhomöostase wird in der Zelle von drei Stoffwechselwegen reguliert: den molekularen Chaperonen, dem Ubiquitin-Proteasom-System und dem autophagosomalen Abbauweg. Die (Makro)Autophagie verpackt und transportiert zytosolische Komponenten in Autophagosomen zu den Lysosomen, wo sie abgebaut werden. Eine Störung dieses Abbauwegs wirkt auf die Proteostase.rnIn dieser Dissertation wurde C. elegans als Modellorganismus zur Erforschung von Proteinstabilität genutzt. In einer RNAi-vermittelten Proteostase-Analyse von Chromosom I und ausgewählter zusätzlicher Gene wurde ein Wurmstamm, der ein Luc::GFP-Konstrukt im Muskel exprimiert, genutzt. Dieses Reporterprotein aggregiert unter Hitzestressbedingungen und diese Aggregation kann durch Modulatoren der Proteostase beeinflusst werden. Dabei wurden mögliche neue Faktoren der Proteinhomöostase entdeckt. Durch weitere Experimente bei denen die Aggregation von PolyQ35::YFP im AM140-System, der Paralyse-Phänotyp und die Akkumulation Thioflavin S-gefärbter Aggregate von Aβ42 im CL2006-Wurmstamm und die Effekte auf die Autophagie mittels eines GFP::LGG1-Konstrukt analysiert wurden, konnten rbg-1 und rbg-2 als neue Modulatoren der Proteinhomöostase, insbesondere der Autophagie, identifiziert werden.rnIm Säuger bilden beide Orthologe dieser Gene, RAB3GAP1 und RAB3GAP2 den heterodimeren RAB3GAP-Komplex, der bisher nur bekannt war für die Stimulation der Umwandlung der GTP-gebundenen aktiven Form zur GDP-gebundenen inaktiven Form der RAB GTPase RAB3. In Immunoblot-Analysen und mikroskopischen Darstellungen im Säugersystem konnte gezeigt werden, dass die Effekte auf die Proteostase über den autophagosomalen Abbauweg wirken. RAB3GAP1/2 wirken als positive Stimulatoren, wenn die Lipidierung von LC3-I und der autophagische Flux von LC3-II und p62/SQSTM1 betrachtet werden. Diese Effekte werden aber nicht über die RAB GTPase RAB3 vermittelt. Die Proteine FEZ1 und FEZ2 haben einen antagonistischen Effekt auf die Autophagie und wenn alle vier Komponenten RAB3GAP1, RAB3GAP2, FEZ1 und FEZ2 zusammen herunter- oder hochreguliert werden, heben sich diese Effekte auf. In Co-Immunopräzipitationen und proteomischen Analysen konnte keine direkte Interaktion zwischen dem RAB3GAP-Komplex und FEZ1/2 oder zu anderen Autophagie-Genen nachgewiesen werden.rnHier konnte der RAB3GAP-Komplex funktionell mit Proteostase und Autophagie in C. elegans und Säugerzellen assoziiert werden. Dieser Komplex zeigt Einflüsse auf die autophagosomale Biogenese indem sie die Proteostase und die Bildung von (prä)autophagosomalen Strukturen in C. elegans und die Lipidierung von LC3 und damit den autophagischen Flux der Autophagiesubstrate LC3-II und p62/SQSTM1 in Säugerzellen beeinflusst. Darüber hinaus wirkt RAB3GAP der komplexen Autophagie-Unterdrückung durch FEZ1 und FEZ2 entgegen. Somit konnte gezeigt werden, dass RAB3GAP als neuartiger Faktor auf die autophagosomale Biogenese und somit auf die Proteostase wirkt.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gewebe, Zellen und speziell Zellkompartimente unterscheiden sich in ihrer Sauerstoffkonzentration, Stoffwechselrate und in der Konzentration an gebildeten reaktiven Sauerstoffspezies. Um eine mögliche Änderung in der Aminosäurennutzung durch den Einfluss von Sauerstoff und seinen reaktiven Spezies untersuchen zu können wurden, Bereiche bzw. Kompartimente der menschlichen Zelle definiert, die einen Referenzrahmen bildeten und bekannt dafür sind, einen relativ hohen Grad an reaktiven Sauerstoffspezies aufzuweisen. Aus dem Vergleich wurde deutlich, dass vor allem die beiden redox-aktiven und schwefeltragenden Aminosäuren Cystein und Methionin durch eine besondere Verteilung und Nutzung charakterisiert sind. Cystein ist hierbei diejenige Aminosäure mit den deutlichsten Änderungen in den fünf untersuchten Modellen der oxidativen Belastung. In all diesen Modellen war die Nutzung von Cystein deutlich reduziert, wohingegen Methionin in Proteinen des Mitochondriums und der Elektronentransportkette angereichert war. Dieser auf den ersten Blick paradoxe Unterschied zwischen Cystein und Methionin wurde näher untersucht, indem die differenzierte Methioninnutzung in verschiedenen Zellkompartimenten von Homo sapiens charakterisiert wurde.rnDie sehr leicht zu oxidierende Aminosäure Methionin zeigt ein ungewöhnliches Verteilungsmuster in ihrer Nutzungshäufigkeit. Entgegen mancher Erwartung wird Methionin in zellulären Bereichen hoher oxidativer Belastung und starker Radikalproduktion intensiv verwendet. Dieses Verteilungsmuster findet man sowohl im intrazellulären Vergleich, als auch im Vergleich verschiedener Spezies untereinander, was daraufhin deutet, dass es einen lokalen Bedarf an redox-aktiven Aminosäuren gibt, der einen sehr starken Effekt auf die Nutzungshäufigkeit von Methionin ausübt. Eine hohe Stoffwechselrate, die im Allgemeinen mit einer erhöhten Produktion von Oxidantien assoziiert wird, scheint ein maßgeblicher Faktor der Akkumulation von Methionin in Proteinen der Atmungskette zu sein. Die Notwendigkeit, oxidiertes Antioxidans wieder zu reduzieren, findet auch bei Methionin Anwendung, denn zu Methioninsulfoxid oxidiertes Methionin wird durch die Methioninsulfoxidreduktase wieder zu Methionin reduziert. Daher kann die spezifische Akkumulation von Methionin in Proteinen, die verstärkt reaktiven Sauerstoffspezies ausgesetzt sind, als eine systematische Strategie angesehen werden, um andere labile Strukturen vor ungewollter Oxidation zu schützen. rnDa Cystein in allen untersuchten Modellen der oxidativen Belastung und im Besonderen in Membranproteinen der inneren Mitochondrienmembran lebensspannenabhängig depletiert war, wurde dieses Merkmal näher untersucht. Deshalb wurde die Hypothese getestet, ob ein besonderer Redox-Mechanismus der Thiolfunktion für diese selektive Depletion einer im Allgemeinen als harmlos oder antioxidativ geltenden Aminosäure verantwortlich ist. Um den Effekt von Cysteinresten in Membranen nachzustellen, wurden primäre humane Lungenfibroblasten (IMR90) mit diversen Modellsubstanzen behandelt. Geringe Konzentrationen der lipophilen Substanz Dodecanthiol verursachten eine signifikante Toxizität in IMR90-Zellen, die von einer schnellen Zunahme an polyubiquitinierten Proteinen und anderen Indikatoren des proteotoxischen Stresses, wie Sequestosom 1 (P62), HSP70 und HSP90 begleitet wurde. Dieser Effekt konnte spezifisch der Chemie der Thiolfunktion in Membranen zugeordnet werden, da Dodecanol (DOH), Dodecylmethylsulfid (DMS), Butanthiol oder wasserlösliche Thiole weder eine cytotoxische Wirkung noch eine Polyubiquitinierung von Proteinen verursachten. Die Ergebnisse stimmen mit der Hypothese überein, dass Thiole innerhalb von biologischen Membranen als radikalische Kettentransferagentien wirken. Diese Eigenschaft wird in der Polymerchemie durch Nutzung von lipophilen Thiolen in hydrophoben Milieus technisch für die Produktion von Polymeren benutzt. Da die Thiylradikal-spezifische Reaktion von cis-Fettsäuren zu trans-Fettsäuren in 12SH behandelten Zellen verstärkt ablief, kann gefolgert werden, dass 12SH zellulär radikalisiert wurde. In lebenden Organismen kann demnach die Oxidation von Cystein die Schädigung von Membranen beschleunigen und damit Einfallstore für die laterale Radikalisierung von integralen Membranproteinen schaffen, welche möglicherweise der Langlebigkeit abträglich ist, zumindest, wenn sie in der inneren Mitochondrienmembran auftritt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Das Studium der Auflösungs- und Wachstumsprozesse an Feststoff-Flüssigkeits-Grenzflächen unter nicht-hydrostatischen Beanspruchungen ist wesentlich für das Verständnis von Defor-mationsprozessen, die in der Erde ablaufen. Unter diesen genannten Prozessen gehört die Drucklösung zu den wichtigsten duktilen Deformationsprozessen, von der Diagenese bishin zur niedrig- bis mittelgradigen metamorphen Bedingungen. Bisher ist allerdings wenig darüber bekannt, welche mechanischen, physikalischen oder chemischen Potentialenergie-Gradienten die Drucklösung steuern. I.a. wird angenommen, daß die Drucklösung durch Un-terschiede kristallplastischer Verformungsenergien oder aber durch Unterschiede der Normal-beanspruchung an Korngrenzen gesteuert wird. Unterschiede der elastischen Verformungs-energien werden dabei allerdings als zu gering erachtet, um einen signifikanten Beitrag zu leisten. Aus diesem Grund werden sie als mögliche treibende Kräfte für die Drucklösung vernachlässigt. Andererseits haben neue experimentelle und theoretische Untersuchungen gezeigt, daß die elastische Verformung in der Tat einen starken Einfluß auf Lösungs- und Wachstumsmechanismen von Kristallen in einer Lösung haben kann. Da die in der Erdkruste vorherrschenden Deformationsmechanismen überwiegend im elastischen Verformungsbereich der Gesteine ablaufen, ist es sehr wichtig, das Verständnis für die Effekte, die die elastische Verformung verursacht, zu erweitern, und ihre Rolle während der Deformation durch Drucklösung zu definieren. Die vorliegende Arbeit beschäftigt sich mit Experimenten, bei denen der Effekt der mechanisch kompressiven Beanspruchung auf Lösungs- und Wachstumsprozesse von Einzelkristallen unterschiedlicher, sehr gut löslicher, elastisch/spröder Salze untersucht wurde. Diese Salze wurden als Analoga gesteinsbildender Minerale wie Quarz und Calcit ausgewählt. Der Einfluß von Stress auf die Ausbildung der Oberflächenmikrostrukturen in einer untersättigten Lösung wurde an Kaliumalaun untersucht.Lösungsrillen (20 – 40 µm breit, 10 – 40 µm tief und 20 – 80 µm Abstand) entwickelten sich in den Bereichen, in denen die Beanspruchung im Kristall am größten war. Sie verschwanden wieder, sobald der Kristall entlastet wurde. Diese Rillen entwickelten sich parallel zu niedrig indizierten kristallographischen Richtungen und sub-perpendikular zu den Trajektorien, die der maximalen, lokalen kompressiven Beanspruchung entsprachen. Die Größe der Lösungsrillen hing von der lokalen Oberflächenbeanspruchung, der Oberflächenenergie und dem Untersättigungsgrad der wässrigen Lösung ab. Die mikrostrukturelle Entwicklung der Kristalloberflächen stimmte gut mit den theoretischen Vorhersagen überein, die auf den Modellen von Heidug & Leroy (1994) und Leroy & Heidug (1994) basieren. Der Einfluß der Beanspruchung auf die Auflösungsrate wurde an Natriumchlorat-Einzelkristallen untersucht. Dabei wurde herausgefunden, daß sich gestresste Kristalle schneller lösen als Kristalle, auf die keine Beanspruchung einwirkt. Der experimentell beobachtete Anstieg der Auflösungsrate der gestressten Kristalle war ein bis zwei Größenordnungen höher als theoretisch erwartet. Die Auflösungsrate stieg linear mit dem Stress an, und der Anstieg war um so größer, je stärker die Lösung untersättigt war. Außerdem wurde der Effekt der Bean-spruchung auf das Kristallwachstum an Kaliumalaun- und Kaliumdihydrogenphosphat-Ein-zelkristallen untersucht. Die Wachstumsrate der Flächen {100} und {110} von Kalium-alaun war bei Beanspruchung stark reduziert. Für all diese Ergebnisse spielte die Oberflächenrauhigkeit der Kristalle eine Schlüsselrolle, indem sie eine nicht-homogene Stressverteilung auf der Kristalloberfläche verursachte. Die Resultate zeigen, daß die elastische Verformung eine signifikante Rolle während der Drucklösung spielen kann, und eine signifikante Deformation in der oberen Kruste verursachen kann, bei Beanspruchungen, die geringer sind, als gemeinhin angenommen wird. Somit folgt, daß die elastische Bean-spruchung berücksichtigt werden muß, wenn mikrophysikalische Deformationsmodelle entwickelt werden sollen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die AMPK ist ein ubiquitär exprimiertes, heterotrimeres Enzym, das bei Energiemangel das Überleben der Zelle sichert. Um diese Funktion ausüben zu können fungiert die AMPK als sogenannter „Energie-Sensor“, der durch steigende AMP Mengen aktiviert wird. In diesem Zustand werden ATP verbrauchende Reaktionen inhibiert und gleichzeitig ATP generierende Vorgänge induziert. Im vaskulären System konnte gezeigt werden, dass die endotheliale NOSynthase durch die AMPK aktiviert, die Angiogenese stimuliert, die Endothelzellapoptose und das Wachstum von Gefäßmuskelzellen inhibiert wird. All diese Prozesse sind fundamental in der Entwicklung von kardiovaskulären Krankheiten, was auf eine protektive Funktion der AMPK im vaskulären System hindeutet. In der vorliegenden Arbeit sollten die Effekte der in vivo Modulation der AMPK Aktivität auf Endothelfunktion, oxidativen Stress und Inflammation untersucht werden. Dazu wurden zwei unterschiedliche Mausmodelle genutzt: Einerseits wurde die AMPK Aktivität durch den pharmakologischen AMPK-Aktivator AICAR stimuliert und andererseits die vaskulär vorherrschende AMPK-Isoform durch knock out ausgeschaltet. Zur Induktion von oxidativem Stress wurde ein bereits charakterisiertes Angiotensin II-Modell angewandt. Zur Untersuchung gehörten neben den Superoxid-Messungen auch die Bestimmung der Stickstoffmonoxid-Mengen in Serum und Aortengewebe, die Relaxationsmessungen in isometrischen Tonusstudien sowie HPLC-basierte Assays. Es konnte gezeigt werden, dass durch die Aktivierung der AMPK mittels AICAR die Angiotensin II induzierte Endotheldysfunktion, der oxidative Stress und auch die vaskuläre Inflammation verbessert werden konnte. Weiterhin zeigte sich dass der knock out der vaskulären Isoform (α1) im Angiotensin II Modell eine signifikant verstärkte Endotheldysfunktion, oxidativen Stress und Inflammation nach sich zog. Anhand der erhobenen Daten konnte die NADPH-Oxidase als Hauptquelle des Angiotensin II induzierten oxidativen Stresses identifiziert werden, wobei sich diese Quelle als AMPK sensitiv erwies. Durch die Aktivierung konnte die Aktivität der NADPH-Oxidase verringert und durch die α1AMPK Defizienz signifikant erhöht werden. Auch die mitochondriale Superoxidproduktion konnte durch die Modulation der AMPK Aktivität beeinflusst werden. Die vaskuläre Inflammation, die anhand der Surrogaten VCAM-1, COX-2 und iNOS untersucht wurde, konnte durch Aktivierung der AMPK verringert werden, der knock out der α1AMPK führte so einer sehr starken Expressionssteigerung der induzierbaren NO-Synthase, was in einem starken Anstieg der NO-Produktion und somit der Peroxynitritbildung resultierte.Die dargestellten Daten deuten stark auf eine protektive Funktion der AMPK im vaskulären System hin und sollte als therapeutisches Ziel, nicht nur in Bezug auf diabetische Patienten, in Betracht gezogen werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free radical theory of aging postulates that aging is caused by damage induced by oxidative stress. Such stress is present when the production of reactive oxygen species (ROS) exceeds the cellular antioxidant capacity. Hydrogen peroxide (H2O2) is one of the most abundant ROS. It is produced as a by-product by several enzymes and acts as second messenger controlling the activity of numerous cellular pathways. To maintain H2O2 levels that are sufficiently high to allow signaling to occur, but low enough to prevent damage of cellular macromolecules, the production and removal of H2O2 must be tightly regulated.rnWhen we investigated the effects of peroxide stress in the nematode C. elegans, we found that exogenous as well as endogenous peroxide stress causes age-related symptoms. We identified 40 target proteins of hydrogen peroxide that contain cysteines that get oxidized upon peroxide stress. Oxidation of redox-sensitive cysteines has been shown to regulate numerous cellular functions and likely contributes to the peroxide-mediated decrease in motility, fertility, growth rate and ATP levels. By monitoring the oxidation status of proteins over the lifespan of C. elegans, we discovered that many of the identified peroxide-sensitive proteins are heavily oxidized at distinct stages in life. As the free radical theory of aging predicts, we found oxidation to be significantly elevated in senescent worms. However, we were also able to identify numerous proteins that were significantly oxidized during the development of C. elegans. To investigate whether a correlation exists between developmental oxidative stress and lifespan, we monitored protein oxidation in long- and short-lived strains. We found that protein oxidation in short-lived C. elegans larvae was significantly increased. Additionally short-lived worms were incapable of recovering from the oxidative stress experienced during development which resulted in the inability to establish reducing conditions for the following reproductive phase. Long-lived C. elegans, on the other hand, did only experience a mild increase in protein oxidation in the developmental phase and were able to recover faster from oxidative stress than wild type worms. rnBecause many proteins that are sensitive to oxidation by H2O2 became oxidized in aging C. elegans, we monitored endogenous hydrogen peroxide concentrations over C. elegans lifespan and discovered that peroxide levels are significantly elevated in development. This suggests that the observed developmental protein oxidation is peroxide-mediated. The early onset of oxidative stress might be a result of increased metabolic activity in C. elegans development but could also represent the requirement of ROS dependent signaling events. Our results indicate that longevity is dependent on the worm’s ability to cope with this early boost of oxidants.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidativer Stress in Form reaktiver Sauerstoffspezies (ROS) und Exzitotoxizität durch supraphysiologische Konzentrationen des Neurotransmitters Glutamat sind nicht nur beteiligt an der Pathogenese vielzähliger neurodegenerativer Erkrankungen wie Schlaganfall, Hirntrauma, Alzheimer Demenz oder Multipler Sklerose, sondern spielen zudem eine Schlüsselrolle im dort beobachteten Zusammenbruch der Blut-Hirn-Schranke. Glutamat führt durch Stimulation neuronaler und endothelialer NMDA-Rezeptoren zu einer Generierung von ROS. Nicht verfolgt worden war bisher, welche Auswirkungen ROS umgekehrt auch auf den NMDA-Rezeptor haben könnten. Im Rahmen der vorliegenden Arbeit wurde daher untersucht, ob und in welcher Weise die Exposition gegenüber reaktiven Sauerstoffspezies einen Einfluss auf die Expression und Aktivierbarkeit von NMDA-Rezeptoren auf zerebrovaskulären Endothelzellen ausübt.rnEs konnte zunächst die Expression der funktionell obligaten NR-1 Untereinheit des NMDA-Rezeptors auf der verwendeten Zelllinie b.End3 mittels Immunfluoreszenz-Mikroskopie gesichert werden. Ein Nachweis von mRNA für die Untereinheiten NR1 und NR2B, C und D erfolgte mittels RT-PCR. In der Analyse der replizierten RNA zeigten sich Hinweise für eine heterogene Komposition der exprimierten endothelialen NMDA-Rezeptoren.rnEs konnte weiter mit Hilfe der In-Cell-Western-Technik gezeigt werden, dass die Expression des NMDA-Rezeptors durch transiente Stimulation mit reaktiven Sauerstoffspezies im Sinne einer Heraufregulation moduliert werden kann. Die Stimulation der Zellen mit den reaktiven Sauerstoffspezies O2-, ONOO- und H2O2 führte dabei im Experiment zu einer deutlichen Zunahme der NR1-Expression, die spätestens nach 72 Stunden höchst signifikant war.rnUm zu überprüfen, welche Bedeutung diese Überexpression für die Integrität der Blut-Hirn-Schranke unter den exzitotoxischen Bedingungen hoher Glutamatkonzentrationen haben könnte, wurde mit Hilfe des ECIS-Systems („Electrical Cell-Substrate Impedance Sensing“) die Impedanz ROS-präexponierter Endothelmonolayer gemessen. Auf Rezeptorstimulation mit dem spezifischen Agonisten NMDA reagierten die vorbehandelten Gruppen mit einem Abfall der Impedanz gegenüber der nicht vorbehandelten Kontrolle.rnrnDie vorliegenden Ergebnisse zeigen, dass ROS in der Lage sind, funktionelle endotheliale NMDA-Rezeptoren zu induzieren und auf diesem Weg zu einem verstärkten Abfall der BHS-Integrität unter den Bedingungen exzitotoxischen und oxidativen Stresses führen. Dies stellt einen neuen Mechanismus zur Erklärung der Pathogenese des Blut-Hirn-Schrankenversagens dar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The betaine/GABA transporter BGT1 is one of the most important osmolyte transporters in the kidney. BGT1 is a member of the neurotransmitter sodium symporter (NSS) family, facilitates Na+/Cl--coupled betaine uptake to cope with hyperosmotic stress. Betaine transport in kidney cells is upregulated under hypertonic conditions by a yet unknown mechanism when increasing amounts of intracellular BGT1 are inserted into the plasma membrane. Re-establishing isotonicity results in ensuing depletion of BGT1 from the membrane. BGT1 phosphorylation on serines and threonines might be a regulation mechanism. In the present study, four potential PKC phosphorylation sites were mutated to alanines and the responses to PKC activators, phorbol 12-myristate acetate (PMA) and dioctanoyl-sn-glycerol (DOG) were determined. GABA-sensitive currents were diminished after 30 min preincubation with these PKC activators. Staurosporine blocked the response to DOG. Three mutants evoked normal GABA-sensitive currents but currents in oocytes expressing the mutant T40A were greatly diminished. [3H]GABA uptake was also determined in HEK-293 cells expressing EGFP-tagged BGT1 with the same mutations. Three mutants showed normal upregulation of GABA uptake after hypertonic stress, and downregulation by PMA was normal compared to EGFP-BGT1. In contrast, GABA uptake by the T40A mutant showed no response to hypertonicity or PMA. Confocal microscopy of the EGFP-BGT1 mutants expressed in MDCK cells, grown on glass or filters, revealed that T40A was present in the cytoplasm after 24 h hypertonic stress while the other mutants and EGFP-BGT1 were predominantely present in the plasma membrane. All four mutants co-migrated with EGFP-BGT1 on Western blots suggesting they are full-length proteins. In conclusion, T235, S428, and S564 are not involved in downregulation of BGT1 due to phosphorylation by PKC. However, T40 near the N-terminus may be part of a hot spot important for normal trafficking or insertion of BGT1 into the plasma membrane. Additionally, a link between substrate transport regulation, insertion of BGT1 into the plasma membrane and N-glycosylation in the extracellular loop 2 (EL2) could be revealed. The functional importance of two predicted N-glycosylation sites, which are conserved in EL2 within the NSS family were investigated for trafficking, transport and regulated plasma membrane insertion by immunogold-labelling, electron microscopy, mutagenesis, two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radioactive-labelled substrate into MDCK cells. Trafficking and plasma membrane insertion of BGT1 was clearly promoted by proper N-glycosylation in both, oocytes and MDCK cells. De-glycosylation with PNGase F or tunicamycin led to a decrease in substrate affinity and transport rate. Mutagenesis studies revealed that in BGT1 N183 is the major N-glycosylation site responsible for full protein activity. Replacement of N183 with aspartate resulted in a mutant, which was not able to bind N-glycans suggesting that N171 is a non-glycosylated site in BGT1. N183D exhibited close to WT transport properties in oocytes. Surprisingly, in MDCK cells plasma membrane insertion of the N183D mutant was no longer regulated by osmotic stress indicating unambiguously that association with N-glycans at this position is linked to osmotic stress-induced transport regulation in BGT1. The molecular transport mechanism of BGT1 remains largely unknown in the absence of a crystal structure. Therefore investigating the structure-function relationship of BGT1 by a combination of structural biology (2D and 3D crystallization) and membrane protein biochemistry (cell culture, substrate transport by radioactive labeled GABA uptake into cells and proteoliposomes) was the aim of this work. While the functional assays are well established, structure determination of eukaryotic membrane transporters is still a challenge. Therefore, a suitable heterologous expression system could be defined, starting with cloning and overexpression of an optimized gene. The achieved expression levels in P. pastoris were high enough to proceed with isolation of BGT1. Furthermore, purification protocols could be established and resulted in pure protein, which could even be reconstituted in an active form. The quality and homogeneity of the protein allowed already 2D and 3D crystallization, in which initial crystals could be obtained. Interestingly, the striking structural similarity of BGT1 to the bacterial betaine transporter BetP, which became a paradigm for osmoregulated betaine transport, provided information on substrate coordination in BGT1. The structure of a BetP mutant that showed activity for GABA was solved to 3.2Å in complex with GABA in an inward facing open state. This structure shed some light into the molecular transport mechanisms in BGT1 and might help in future to design conformationally locked BGT1 to enforce the on-going structure determination.