5 resultados para Second-order conditions

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Relativistic effects need to be considered in quantum-chemical calculations on systems including heavy elements or when aiming at high accuracy for molecules containing only lighter elements. In the latter case, consideration of relativistic effects via perturbation theory is an attractive option. Among the available techniques, Direct Perturbation Theory (DPT) in its lowest order (DPT2) has become a standard tool for the calculation of relativistic corrections to energies and properties.In this work, the DPT treatment is extended to the next order (DPT4). It is demonstrated that the DPT4 correction can be obtained as a second derivative of the energy with respect to the relativistic perturbation parameter. Accordingly, differentiation of a suitable Lagrangian, thereby taking into account all constraints on the wave function, provides analytic expressions for the fourth-order energy corrections. The latter have been implemented at the Hartree-Fock level and within second-order Møller-Plesset perturbaton theory using standard analytic second-derivative techniques into the CFOUR program package. For closed-shell systems, the DPT4 corrections consist of higher-order scalar-relativistic effects as well as spin-orbit corrections with the latter appearing here for the first time in the DPT series.Relativistic corrections are reported for energies as well as for first-order electrical properties and compared to results from rigorous four-component benchmark calculations in order to judge the accuracy and convergence of the DPT expansion for both the scalar-relativistic as well as the spin-orbit contributions. Additionally, the importance of relativistic effects to the bromine and iodine quadrupole-coupling tensors is investigated in a joint experimental and theoretical study concerning the rotational spectra of CH2BrF, CHBrF2, and CH2FI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In dieser Arbeit wurden dünne Schichten von Heusler-Verbindungen hergestellt und auf ihre Transporteigenschaften hin untersucht.rnDer Anomale Hall-Effekt (AHE) ist dabei von besonderem Interesse. Er ist ein seit langer Zeit bekannter, jedoch noch nicht vollständig verstandener Transport-Effekt. Die meisten Veröffentlichungen theoretischer Arbeiten konzentrieren sich auf den Einfluss eines bestimmten Beitrags zum AHE. Tatsächlich gemessene experimentelle Daten können jedoch oft nicht in Einklang mit idealisierten Annahmen gebracht werden. rnDie vorliegende Arbeit diskutiert die Ergebnisse, welche aus Messungen von Materialien mit niedrigem Restwiderstand erhalten wurden. rnrnAls prototypische Materialien wurden hier hyphenation Heusler-Verbindungen untersucht. Als Material mit einer komplexen Topologie der Fermi-Fläche zeichnet sich dort der Einfluss von Defekten und der Unordnung der Kristallstruktur deutlich ab.rnrnDurch Verwendung von Filmen mit unterschiedlichem Grad der Unordnung können verschiedene Streumechanismen unterschieden werden. Für Co$_{2}$FeSi$_{0.6}$Al$_{0.4}$ and Co$_{2}$FeGa$_{0.5}$Ge$_{0.5}$ zeigt sich ein positiver AHE bei einer Unordnung vom Typ B2 und bei einer induzierten temperaturabh"angigen Streuung, wo hingegen eine Typ DO$_{3}$-Unordnung zusammen mit anderen möglichen intrinsischen Beiträgen einen negativen Effekt hervorruft.rnrnDarüber hinaus wurden die magneto-optische Kerr-Effekte (MOKE) dieser Verbindungen untersucht. Hierfür wurden Beiträge erster Ordnung als Funktion der intrinsischen und extrinsischen Parameter qualitativ analysiert. Auf den Einfluss der kristallinen Ordnung auf Beiträge zweiter Ordnung des MOKE-Signals wird ebenfalls eingegangen.rnrnDes Weiteren wurden dünne Schichten der Heusler-Verbindung Co$_{2}$MnAl auf MgO- und Si-Subs-traten (beide (100)) mit Hochfrequenz-Mag-netron-Sputtern erzeugt. Die zusammensetzung sowie die magnetischen und Transport-Eigenschaften wurden hinsichtlich unterschiedlicher Abscheidebedingungen systematisch untersucht.rnrnInsbesondere zeigt der AHE-Widerstand ein außerordentliches temperaturunabhängiges Verhalten in einem Bereich moderater Magnetfeldstärken von 0 bis 0.6,T. Hierf"ur wurde der nicht-diagonale Transport bei Temperaturen bis zu 300,$^{circ}$C analysiert. Die Daten zeigen die Eignung des Materials für Hall-Sensoren auch oberhalb der Raumtemperatur.rnrnJüngst wurde der Spin Seebeck-Effekt (SSE) entdeckt. Der Effekt aus dem Bereich der Spin-Kaloritronik erzeugt eine Spin-Spannung'' aufgrund eines Temperaturgradienten in magnetischen Materialien. Hier werden vorläufige Messungen des SSE in Ni$_{80}$Fe$_{20}$ und in Heusler-Verbindungen präsentiert.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In dieser Arbeit wird der Entwurf, der Aufbau, die Inbetriebnahme und die Charakterisierung einer neuartigen Penning-Falle im Rahmen des Experiments zur Bestimmung des g-Faktors des Protons präsentiert. Diese Falle zeichnet sich dadurch aus, dass die Magnetfeldlinien eines äußeren homogenen Magnetfeldes durch eine ferromagnetische Ringelektrode im Zentrum der Falle verzerrt werden. Der inhomogene Anteil des resultierenden Magnetfeldes, die sogenannte magnetische Flasche, lässt sich durch den Koeffizient B2 = 297(10) mT/mm2 des Terms zweiter Ordnung der Ortsabhängigkeit des Feldes quantifizieren. Eine solche ungewöhnlich starke Feldinhomogenität ist Grundvoraussetzung für den Nachweis der Spinausrichtung des Protons mittels des kontinuierlichen Stern-Gerlach-Effektes. Dieser Effekt basiert auf der im inhomogenen Magnetfeld entstehenden Kopplung des Spin-Freiheitsgrades des gefangenen Protons an eine seiner Eigenfrequenzen. Ein Spin-Übergang lässt sich so über einen Frequenzsprung detektieren. Dabei ist die nachzuweisende Änderung der Frequenz proportional zu B2 und zum im Fall des Protons extrem kleinen Verhältnis zwischen seinem magnetischen Moment nund seiner Masse. Die durch die benötigte hohe Inhomogenität des Magnetfeldes bedingten technischen Herausforderungen erfordern eine fundierte Kenntnis und Kontrolle der Eigenschaften der Penning-Falle sowie der experimentellen Bedingungen. Die in der vorliegenden Arbeit entwickelte Penning-Falle ermöglichte den erstmaligen zerstörungsfreien Nachweis von Spin-Quantensprüngen eines einzelnen gefangenen Protons, was einen Durchbruch für das Experiment zur direkten Bestimmung des g-Faktors mit der angestrebten relativen Genauigkeit von 10−9 darstellte. Mithilfe eines statistischen Verfahrens ließen sich die Larmor- und die Zyklotronfrequenz des Protons im inhomogenen Magnetfeld der Falle ermitteln. Daraus wurde der g-Faktor mit einer relativen Genauigkeit von 8,9 × 10−6 bestimmt. Die hier vorgestellten Messverfahren und der experimentelle Aufbau können auf ein äquivalentes Experiment zur Bestimmung des g-Faktors des Antiprotons zum Erreichen der gleichen Messgenauigkeit übertragen werden, womit der erste Schritt auf dem Weg zu einem neuen zwingenden Test der CPT-Symmetrie im baryonischen Sektor gemacht wäre.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.