4 resultados para Second-Order Recurrence Relations
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The conventional way to calculate hard scattering processes in perturbation theory using Feynman diagrams is not efficient enough to calculate all necessary processes - for example for the Large Hadron Collider - to a sufficient precision. Two alternatives to order-by-order calculations are studied in this thesis.rnrnIn the first part we compare the numerical implementations of four different recursive methods for the efficient computation of Born gluon amplitudes: Berends-Giele recurrence relations and recursive calculations with scalar diagrams, with maximal helicity violating vertices and with shifted momenta. From the four methods considered, the Berends-Giele method performs best, if the number of external partons is eight or bigger. However, for less than eight external partons, the recursion relation with shifted momenta offers the best performance. When investigating the numerical stability and accuracy, we found that all methods give satisfactory results.rnrnIn the second part of this thesis we present an implementation of a parton shower algorithm based on the dipole formalism. The formalism treats initial- and final-state partons on the same footing. The shower algorithm can be used for hadron colliders and electron-positron colliders. Also massive partons in the final state were included in the shower algorithm. Finally, we studied numerical results for an electron-positron collider, the Tevatron and the Large Hadron Collider.
Resumo:
Fagin zeigt in seiner bahnbrechenden Arbeit, dass die Komplexitätsklasse NP mit der logischen Sprache 'existentielle Logik zweiter Ordnung' identifiziert werden kann. Ein einfaches und daher greifbares Fragment dieser Sprache ist monadic NP. Fagin bezeichnet monadic NP als '...training ground for attacking the problems in their full generality'. In dieser Arbeit werden zwei Arten von monadischen Erweiterungen von monadic NP untersucht. Der erste Teil beschäftigt sich mit schwachen built-in Relationen.Einebuilt-in Relation B heißt schwach, falls: monadic NP + B + polynomielles Padding neq NP.Es werden zwei neue Klassen schwacher built-in Relationen (unendlich teilbare-und verpackbare built-in Relationen) eingeführt. Hauptergebnis dieses Teils ist eine Klassifizierung aller bekannten schwachen built-in Relationen mittels dieser beiden Klassen. Im zweiten Teil dieser Arbeit werden monadische Abschlüsse von monadic NP betrachtet. Besonderes Interesse gilt dabei den positiven Abschluss erster Ordnung von monadic NP (kurz: PFO(monNP)). Hauptergebnis dieses Teils ist die Aussage, dass nicht-k-Färbbarkeit (k=>3) nicht ausdrückbar ist in PFO(monNP).
Resumo:
Relativistic effects need to be considered in quantum-chemical calculations on systems including heavy elements or when aiming at high accuracy for molecules containing only lighter elements. In the latter case, consideration of relativistic effects via perturbation theory is an attractive option. Among the available techniques, Direct Perturbation Theory (DPT) in its lowest order (DPT2) has become a standard tool for the calculation of relativistic corrections to energies and properties.In this work, the DPT treatment is extended to the next order (DPT4). It is demonstrated that the DPT4 correction can be obtained as a second derivative of the energy with respect to the relativistic perturbation parameter. Accordingly, differentiation of a suitable Lagrangian, thereby taking into account all constraints on the wave function, provides analytic expressions for the fourth-order energy corrections. The latter have been implemented at the Hartree-Fock level and within second-order Møller-Plesset perturbaton theory using standard analytic second-derivative techniques into the CFOUR program package. For closed-shell systems, the DPT4 corrections consist of higher-order scalar-relativistic effects as well as spin-orbit corrections with the latter appearing here for the first time in the DPT series.Relativistic corrections are reported for energies as well as for first-order electrical properties and compared to results from rigorous four-component benchmark calculations in order to judge the accuracy and convergence of the DPT expansion for both the scalar-relativistic as well as the spin-orbit contributions. Additionally, the importance of relativistic effects to the bromine and iodine quadrupole-coupling tensors is investigated in a joint experimental and theoretical study concerning the rotational spectra of CH2BrF, CHBrF2, and CH2FI.
Resumo:
Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.