9 resultados para SITE-SELECTIVE EXCITATION
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Homo-oligofluorenes (OFn), polyfluorenes (PF2/6) and oligofluorenes with one fluorenenone group in the center (OFnK) were synthesized. They were used as model compounds to understand of the structure-property relationships of polyfluorenes and the origin of the green emission in the photoluminescence (after photooxidation of the PFs) and the electroluminescence (EL) spectra. The electronic, electrochemical properties, thermal behavior, supramolecular self-assembly, and photophysical properties of OFn, PF2/6 and OFnK were investigated. Oligofluorenes with 2-ethylhexyl side chain (OF2-OF7) from the dimer up to the heptamer were prepared by a series of stepwise transition metal mediated Suzuki and Yamamoto coupling reactions. Polyfluorene was synthesized by Yamamoto coupling of 2,7-dibromo-9,9-bis(2-ethylhexyl)fluorene. Oligofluorenes with one fluorenone group in the center (OF3K, OF5K, OF7K) were prepared by Suzuki coupling between the monoboronic fluorenyl monomer, dimer, trimer and 2, 7-dibromofluorenone. The electrochemical and electronic properties of homo-oligofluorenes (OFn) were systematically studied by several combined techniques such as cyclic voltammetry, differential pulse voltammetry, UV-vis absorption spectroscopy, steady and time-resolved fluorescence spectroscopy. It was found that the oligofluorenes behave like classical conjugated oligomers, i.e., with the increase of the chain-length, the corresponding oxidation potential, the absorption and emission maximum, ionization potential, electron affinity, band gap and the photoluminescence lifetime displayed a very good linear relation with the reciprocal number of the fluorene units (1/n). The extrapolation of these linear relations to infinite chain length predicted the electrochemical and electronic properties of the corresponding polyfluorenes. The thermal behavior, single-crystal structure and supramolecular packing, alignment properties, and molecular dynamics of the homo-oligofluorenes (OFn) up to the polymer were studied using techniques such as TGA, DSC, WAXS, POM and DS. The OFn from tetramer to heptamer show a smectic liquid crystalline phase with clearly defined isotropization temperature. The oligomers do show a glass transition which exhibits n-1 dependence and allows extrapolation to a hypothetical glass transition of the polymer at around 64 °C. A smectic packing and helix-like conformation for the oligofluorenes from tetramer to heptamer was supported by WAXS experiments, simulation, and single-crystal structure of some oligofluorene derivatives. Oligofluorenes were aligned more easily than the corresponding polymer, and the alignability increased with the molecular length from tetramer to heptamer. The molecular dynamics in a series of oligofluorenes up to the polymer was studied using dielectric spectroscopy. The photophysical properties of OFn and PF2/6 were investigated by the steady-state spectra (UV-vis absorption and fluorescence spectra) and time-resolved fluorescence spectra both in solution and thin film. The time-resolved fluorescence spectra of the oligofluorenes were measured by streak camera and gate detection technique. The lifetime of the oligofluorenes decreased with the extension of the chain-length. No green emission was observed in CW, prompt and delayed fluorescence for oligofluorenes in m-THF and film at RT and 77K. Phosphorescence was observed for oligofluorenes in frozen dilute m-THF solution at 77K and its lifetime increased with length of oligofluorenes. A linear relation was obtained for triplet energy and singlet energy as a function of the reciprocal degree of polymerization, and the singlet-triplet energy gap (S1-T1) was found to decrease with the increase of degree of polymerization. Oligofluorenes with one fluorenone unit at the center were used as model compounds to understand the origin of the low-energy (“green”) emission band in the photoluminescence and electroluminescence spectra of polyfluorenes. Their electrochemical properties were investigated by CV, and the ionization potential (Ip) and electron affinity (Ea) were calculated from the onset of oxidation and reduction of OFnK. The photophysical properties of OFnK were studied in dilute solution and thin film by steady-state spectra and time-resolved fluorescence spectra. A strong green emission accompanied with a weak blue emission were obtained in solution and only green emission was observed on film. The strong green emission of OFnK suggested that rapid energy transfer takes place from higher energy sites (fluorene segments) to lower energy sites (fluorenone unit) prior to the radiative decay of the excited species. The fluorescence spectra of OFnK also showed solvatochromism. Monoexponential decay behaviour was observed by time-resolved fluorescence measurements. In addition, the site-selective excitation and concentration dependence of the fluorescence spectra were investigated. The ratio of green and blue emission band intensities increases with the increase of the concentration. The observed strong concentration dependence of the green emission band in solution suggests that increased interchain interactions among the fluorenone-containing oligofluorene chain enhanced the emission from the fluorenone defects at higher concentration. On the other hand, the mono-exponential decay behaviour and power dependence were not influenced significantly by the concentration. We have ruled out the possibility that the green emission band originates from aggregates or excimer formation. Energy transfer was further investigated using a model system of a polyfluorene doped by OFnK. Förster-type energy transfer took place from PF2/6 to OFnK, and the energy transfer efficiency increased with increasing of the concentration of OFnK. Efficient funneling of excitation energy from the high-energy fluorene segments to the low-energy fluorenone defects results from energy migration by hopping of excitations along a single polymer chain until they are trapped on the fluorenone defects on that chain or transferred onto neighbouring chains by Förster-type interchain energy transfer process. These results imply that the red-shifted emission in polyfluorenes can originate from (usually undesirable) keto groups at the bridging carbon atoms-especially if the samples have been subject to photo- or electro-oxidation or if fluorenone units are present due to an improper purification of the monomers prior to polymerization.
Resumo:
The aim of this thesis was to investigate novel techniques to create complex hierarchical chemical patterns on silica surfaces with micro to nanometer sized features. These surfaces were used for a site-selective assembly of colloidal particles and oligonucleotides. To do so, functionalised alkoxysilanes (commercial and synthesised ones) were deposited onto planar silica surfaces. The functional groups can form reversible attractive interactions with the complementary surface layers of the opposing objects that need to be assembled. These interactions determine the final location and density of the objects onto the surface. Photolithographically patterned silica surfaces were modified with commercial silanes, in order to create hydrophilic and hydrophobic regions on the surface. Assembly of hydrophobic silica particles onto these surfaces was investigated and finally, pH and charge effects on the colloidal assembly were analysed. In the second part of this thesis the concept of novel, "smart" alkoxysilanes is introduced that allows parallel surface activation and patterning in a one-step irradiation process. These novel species bear a photoreactive head-group in a protected form. Surface layers made from these molecules can be irradiated through a mask to remove the protecting group from selected regions and thus generate lateral chemical patterns of active and inert regions on the substrate. The synthesis of an azide-reactive alkoxysilane was successfully accomplished. Silanisation conditions were carefully optimised as to guarantee a smooth surface layer, without formation of micellar clusters. NMR and DLS experiments corroborated the absence of clusters when using neither water nor NaOH as catalysts during hydrolysis, but only the organic solvent itself. Upon irradiation of the azide layer, the resulting nitrene may undergo a variety of reactions depending on the irradiation conditions. Contact angle measurements demonstrated that the irradiated surfaces were more hydrophilic than the non-irradiated azide layer and therefore the formation of an amine upon irradiation was postulated. Successful photoactivation could be demonstrated using condensation patterns, which showed a change in wettability on the wafer surface upon irradiation. Colloidal deposition with COOH functionalised particles further underlined the formation of more hydrophilic species. Orthogonal photoreactive silanes are described in the third part of this thesis. The advantage of orthogonal photosensitive silanes is the possibility of having a coexistence of chemical functionalities homogeneously distributed in the same layer, by using appropriate protecting groups. For this purpose, a 3',5'-dimethoxybenzoin protected carboxylic acid silane was successfully synthesised and the kinetics of its hydrolysis and condensation in solution were analysed in order to optimise the silanisation conditions. This compound was used together with a nitroveratryl protected amino silane to obtain bicomponent surface layers. The optimum conditions for an orthogonal deprotection of surfaces modified with this two groups were determined. A 2-step deprotection process through a mask generated a complex pattern on the substrate by activating two different chemistries at different sites. This was demonstrated by colloidal adsorption and fluorescence labelling of the resulting substrates. Moreover, two different single stranded oligodeoxynucleotides were immobilised onto the two different activated areas and then hybrid captured with their respective complementary, fluorescent labelled strand. Selective hybridisation could be shown, although non-selective adsorption issues need to be resolved, making this technique attractive for possible DNA microarrays.
Resumo:
In this work, solid-state NMR methods suitable for the investigation of supramolecular systems were developed and improved. In this context, special interest was focussed on non-covalent interactions responsible for the formation of supramolecular structures, such as pi-pi interacions and hydrogen-bonds. In the first part of this work, solid-state NMR methods were presented that provide information on molecular structure and motion via the investigation of anisotropic interactions, namely quadrupole and dipole-dipole couplings, under magic-angle spinning conditions. A two-dimensional 2H double quantum experiment was developed, which is performed under off magic-angle conditions and correlates 2H isotropic chemical shifts with quasistatic DQ-filtered line shapes. From the latter, the quadrupole coupling parameters of samples deuterated at multiple sites can be extracted in a site-selective fashion. Furthermore, 7Li quadrupole parameters of lithium intercalated into TiO2 were determined by NMR experiments performed under static and MAS conditions, and could provide information on the crystal geometry. For the determination of 7Li-7Li dipole-dipole couplings, multiple-quantum NMR experiments were performed. The 1H-13C REREDOR experiment was found to be capable of determining strong proton-carbon dipole-dipole couplings with an accuracy of 500~Hz, corresponding to a determination of proton-carbon chemical-bond lengths with picometer accuracy In the second part of this work, solid-state NMR experiments were combined with quantum-chemical calculations in order to aid and optimise the interpretation of experimental results. The investigations on Calix[4]hydroquinone nanotubes have shown that this combined approach can provide information on the presence of disordered and/or mobile species in supramolecular structures. As a second example, C3-symmetric discs arranging in helical columnar stacks were investigated. In these systems, 1H chemical shifts experience large pi-shifts due to packing effects, which were found to be long-ranged. Moreover, quantum-chemical calculations revealed that helicity in these systems is induced by the propeller-like conformation of the core of the molecules.
Resumo:
In dieser Arbeit werden nichtlineare Experimente zur Untersuchung der Dynamik in amorphen Festkörpern im Rahmen von Modellrechnungen diskutiert. Die Experimente beschäftigen sich mit der Frage nach dynamischen Heterogenitäten, worunter man das Vorliegen dynamischer Prozesse auf unterschiedlichen Zeitskalen versteht. Ist es möglich, gezielt 'langsame' oder 'schnelle' Dynamik in der Probe nachzuweisen, so ist die Existenz von dynamischen Heterogenitäten gezeigt. Ziel der Experimente sind deshalb sogenannte frequenzselektive Anregungen des Systems. In den beiden diskutierten Experimenten, zum einen nichtresonantes Lochbrennen, zum anderen ein ähnliches Experiment, das auf dem dynamischen Kerreffekt beruht, werden nichtlineare Antwortfunktionen gemessen. Um eine Probe in frequenzselektiver Weise anzuregen, werden zunächst einer oder mehrere Zyklen eines oszillierenden elektrischen Feldes an die Probe angelegt. Die Experimente werden zunächst im Terahertz-Bereich untersucht. Auf dieser Zeitskala findet man phonon-ähnliche kollektive Schwingungen in Gläsern. Diese Schwingungen werden durch (anharmonische) Brownsche Oszillatoren beschrieben. Der zentrale Befund der Modellrechnungen ist, daß eine frequenzselektive Anregung im Terahertz-Bereich möglich ist. Ein Nachweis dynamischer Heterogenitäten im Terahertz-Bereich ist somit durch beide Experimente möglich. Anschliessend wird das vorgestellte Kerreffekt-Experiment im Bereich wesentlich kleinerer Frequenzen diskutiert. Die langsame Reorientierungsdynamik in unterkühlten Flüssigkeiten wird dabei durch ein Rotationsdiffusionsmodell beschrieben. Es werden zum einen ein heterogenes und zum anderen ein homogenes Szenario zugrundegelegt. Es stellt sich heraus, daß wie beim Lochbrennen eine Unterscheidung durch das Experiment möglich ist. Das Kerreffekt-Experiment wird somit als eine relativ einfache Alternative zur Technik des nichtresonanten Lochbrennens vorgeschlagen.
Resumo:
Studies of organic fluorescent dyes are experiencing a renaissance related to the increasing demands posed by new microscopy techniques for high resolution and high sensitivity. While in the last decade single molecule equipment and methodology has significantly advanced and in some cases reached theoretical limits (e.g. detectors approaching unity quantum yields) unstable emission from chromophores and photobleaching become more and more the bottleneck of the advancement and spreading of single-molecule fluorescence studies. The main goal of this work was the synthesis of fluorophores that are water-soluble, highly fluorescent in an aqueous environment, have a reactive group for attachment to a biomolecule and posses exceptional photostability. An approach towards highly fluorescent, water-soluble and monofunctional perylene-3,4,9,10-tetracarboxdiimide and terrylene-3,4:11,12-tetra carboxidiimide chromophores was presented. A new synthetic strategy for the desymmetrization of perylenetetracarboximides was elaborated; water-solubility was accomplished by introducing sulfonyl substituents in the phenoxy ring. Two strategies have been followed relying on either non-specific or site specific labeling. For this purpose a series of new water-soluble monofunctional perylene and terrylene dyes, bearing amine or carboxy group were prepared. The reactivity and photophysical properties of these new chromophores were studied in aqueous medium. The most suitable chromophores were further derivatized with amine or thiol reactive groups, suitable for chemical modification of proteins. The performance of the new fluorescent probes was assessed by single molecule enzyme tracking, in this case phospholipase acting on phospholipid supported layers. Phospholipase-1 (PLA-1) was labeled with N-hydroxysuccinimide ester functionalized perylene and terrylene derivatives. The purification of the conjugates was accomplished by novel convenient procedure for the removal of unreacted dye from labeled enzymes, which involves capturing excess dye with a solid support. This novel strategy for purification of bioconjugates allows convenient and fast separation of labeled proteins without the need for performing time consuming chromatographic or electrophoretic purification steps. The outstanding photostability of the dyes and, associated therewith, the extended survival times under strong illumination conditions allow a complete characterization of enzyme action on its natural substrates and even connecting enzyme mobility to catalytic activity. For site-specific attachment of the rylene dyes to proteins the chromophores were functionalized with thioesters or nitrilotriacetic acid groups. This allowed attachment of the emitters to the N-terminus of proteins by native chemical ligation or complexation with His-tagged polypeptides at the N- or C-termini, respectively. The synthesis of a water-soluble perylenebis (dicarboximide) functionalized with a thioester group was presented. This chromophore exhibits an exceptional photostability and a functional unit for site-specific labeling of proteins. The suitability of the fluorophore as a covalent label was demonstrated via native chemical ligation with protein containing N-terminal cystein residue. We exploited also oligohisitidine sequences as recognition elements for site-selective labeling. The synthesis of a new water-soluble perylene chromophore, containing a nitrilotriacetic acid functional group was demonstrated, using solution-phase and solid-phase approaches. This chromophore combines the exceptional photophysical properties of the rylene dyes and a recognition unit for site-specific labeling of proteins. An important feature of the label is the unchanged emission of the dye upon complexation with nickel ions.
Resumo:
In dieser Arbeit wurde die Methode der resonanten Ionisation von neutralen Atomen mittels Laserstrahlung auf die leichten Aktinide Thorium, Uran, Neptunium und Plutonium angewendet und für die Ultraspurenanalyse optimiert. Der empfindliche Nachweis dieser Aktinide stellt eine Herausforderung für die Beobachtung und Bestimmung von radioaktiven Verunreinigungen aus kerntechnischen Anlagen in der Umwelt dar. In einem für diese Untersuchungen entwickelten Quadrupolmassenspektrometer konnte durch Resonanzionisationsspektroskopie jeweils eine Reihe unbekannter Energiezustände in der Elektronenhülle des neutralen Atoms der oben genannten Aktinide identifiziert, sowie effiziente Anregungsschemata für die resonante Ionisation entwickelt und charakterisiert werden. Durch die verwendete in-source-Ionisation, die aufgrund der guten Überlagerung von Laserstrahlung und Atomstrahl eine hohe Nachweiseffizienz gewährleistet, konnten diese Untersuchungen bereits mit einem, für Radionuklide notwendigen, geringen Probeneintrag erfolgen. Die resonante Ionisation erlaubt durch die selektiven resonanten Prozesse eine Unterdrückung unerwünschter Kontaminationen und wurde auf den analytischen Nachweis von Ultraspurengehalten in Umweltproben, sowie die Bestimmung der entsprechenden Isotopenzusammensetzung optimiert. Durch die effiziente in-source-Ionisation mit leistungsstarker gepulster Laserstrahlung, konnten Nachweiseffizienzen im Bereich von bis zu 1% erreicht werden. Dabei wurden für Plutonium in synthetischen Proben, aber auch in ersten Umweltproben, Nachweisgrenzen von 10^4-10^5 Atomen erzielt. Die Verwendung spektral schmalbandiger Dauerstrichlaser und eine Ionisation transversal zum frei propagierenden Atomstrahl ermöglicht durch Auflösung der Isotopieverschiebung eine hohe Selektivität gegenüber dominanten Nachbarisotopen, wohingegen die Ionisationseffizienz deutlich abnimmt. Hiermit konnte für das Ultraspurenisotop U-236 eine Nachweisgrenze bis hinab zu 10^-9 für das Isotopenverhältnis N(U-236)/N(U-238) bestimmt werden.
Einzelmolekülspektroskopische und quantenchemische Untersuchungen zum elektronischen Energietransfer
Resumo:
In der vorliegenden Arbeit wurden Untersuchungen zum Mechanismus, der Dynamik und der Kontrolle des elektronischen Energietransfers in multichromophoren Modellsystemen durchgeführt. Als Untersuchungsmethoden wurden hauptsächlich die konfokale Einzelmolekülspektroskopie und die Quantenchemie eingesetzt. Der Aufbau des Einzelmolekülmikroskops wurde bezüglich der Anregungs- und Detektionskomponenten variiert, um die unterschiedlichen Experimente durchzuführen. Die quantenchemischen Rechnungen wurden auf Dichtefunktional- und Coupled-Cluster-Niveau durchgeführt. Die aus den Rechnungen erhaltenen zusätzlichen Informationen über experimentell zum Teil schwer zugängliche Eigenschaften der Farbstoffe unterstützten die Interpretation der experimentellen Befunde. rnIn früheren Untersuchungen der AG Basché wurden die Energietransfer-Raten von Donor-Akzeptor-Systemen gemessen, die erhebliche Abweichungen von nach der Förster-Theorie berechneten Raten zeigten. Daher war ein Ziel der vorliegenden Arbeit, diese Abweichungen zu erklären. Zu diesem Zweck wurde die Geometrie der Diaden experimentell untersucht, sowie die elektronische Kopplung zwischen den Chromophoren quantenchemisch berechnet. Die relative Orientierung der Chromophore in den Diaden wurde in einem Einzelmolekül-Experiment mit rotierender Anregungspolarisation abgefragt. Die erhaltenen Winkelverteilungen konnten schließlich eindeutig auf die Flexibilität der die Chromophore verbrückenden Oligophenyl-Einheiten zurückgeführt werden. Die Unterschiede der gemessenen Energietransfer-Raten zu den nach der Förster-Theorie ermittelten Werten konnten jedoch nicht über die molekulare Flexibilität der Systeme erklärt werden. Aufklärung über die Diskrepanzen zur Förster-Theorie ergaben die quantenchemischen Rechnungen. In Rahmen dieser Arbeit wurde zum ersten Mal die Coupled-Cluster-Theorie zur Berechnung der elektronischen Kopplung eingesetzt. Die Betrachtung der isolierten Chromophore reichte aber nicht aus, um die gemessenen Abweichungen von der Förster-Theorie zu erklären. Erst über die Berücksichtigung der molekularen Brücke konnten die gefunden Abweichungen erklärt werden. Die deutliche Verstärkung der elektronischen Kopplung ist auf die Polarisierbarkeit der Brücke zurückzuführen.rnNach diesen Betrachtungen stand die Kontrolle des Energietransfers im Fokus der weiteren Untersuchungen. In den durchgeführten Einzelmolekülexperimenten wurden die Chromophore der Donor-Akzeptor-Systeme selektiv mit zwei Laserpulsen unterschiedlicher Wellenlänge angeregt. Beim gleichzeitigen Anregen beider Chromophore wurde Singulett-Singulett-Annihilation (SSA) induziert, ein Energietransferprozess, bei dem die Anregungsenergie vom vorigen Akzeptor zum vorigen Donor übertragen wird. Da über SSA Fluoreszenzphotonen gelöscht wurden, konnte über den Abstand der Laserpulse die Fluoreszenzintensität des einzelnen Moleküls moduliert werden. Konzeptionell verwandte Einzelmolekülexperimente wurden an einem weiteren molekularen System durchgeführt, das aus einem Kern und einer Peripherie bestand. Fluoreszenzauszeiten des Gesamtsystems bei selektiver Anregung des Kerns wurden auf die Population eines Triplett-Zustandes zurückgeführt, der die Fluoreszenz der Peripherie löschte. rnAbschließend wurde der SSA-Prozess zwischen zwei gleichartigen Chromophoren untersucht. Es wurde eine Methode entwickelt, die es zum ersten Mal erlaubte, die SSA-Zeitkonstante individueller Moleküle zu bestimmen. Hierfür wurden die Daten der gemessenen Photonen-Koinzidenzhistogramme mittels eines im Rahmen dieser Arbeit hergeleiteten analytischen Zusammenhangs ausgewertet, der über Monte-Carlo-Simulationen bestätigt wurde.
Resumo:
Die Elemente Uran und Plutonium besitzen seit Entdeckung der Kernspaltung und der technischen Nutzung der Kernenergie eine globale Bedeutung. So trägt Pu hauptsächlich zur Radiotoxizität von abgebrannten Brennelementen bei und erfordert im Falle einer Endlagerung in einer tiefen geologischen Formation einen sicheren Verschluss für bis zu einer Million Jahre. Das Wissen über die vorliegenden chemischen Spezies ist dabei entscheidend für das Verständnis der chemisch-physikalischen Wechselwirkungen im jeweiligen geochemischen System, insbesondere mit dem Wirtsgestein (hier Ton) und den allgegenwärtigen Huminstoffen (hier Fulvinsäure). Längerfristig sind so Vorhersagen über einen Transport des hochradioaktiven Abfalls nach Auslaugung und Austritt aus einem Endlager bis in die Biosphäre möglich. Gerade der Ultraspurenbereich, im Fernfeld eines Endlagers zu erwarten, ist dabei von besonderem Interesse. Darüber hinaus machen nuklearforensische Untersuchungen – in Hinblick auf illegal benutztes Nuklearmaterial, Schmuggel oder Nuklearterrorismus – zur Bestimmung der Herkunft, des Alters oder der Radiotoxizität isotopenselektive Nachweismethoden im Ultraspurenbereich notwendig. Im Rahmen dieser Arbeit wurden hierfür die Resonanzionisationsmassenspektrometrie (RIMS) zur isotopenselektiven Spuren- und Ultraspurenanalyse von U und Pu sowie die Kapillarelektrophorese (CE) gekoppelt an die induktiv gekoppelte Plasma (ICP)-Massenspektrometrie (CE-ICP-MS) zur Speziation von Pu eingesetzt. Für den isotopenselektiven Nachweis von Ultraspurenmengen von Uran mittels RIMS wurden vorbereitende Studien durchgeführt und mehrere zweifach resonante Anregungsleitern mit nicht-resonanter Ionisation untersucht. Eine Effizienz von ca. 10^-10 bei einer Nachweisgrenze von 10^12 Atomen U-238 konnte erzielt werden. In Zusammenarbeit mit dem Institut für Radiochemie, TU München, wurde mittels RIMS die Isotopenzusammensetzung von Plutonium, abgetrennt aus einem panzerbrechenden Urangeschoss aus dem Kosovokonflikt, bestimmt und dieses als Waffenplutonium mit einem Gehalt von 15 pg Pu-239/g Uran identifiziert. Rückschlüsse über Herkunft und Alter des Plutoniums konnten daraus gewonnen werden. Für Studien zur Umweltüberwachung von Plutonium in Rheinland-Pfalz wurden Grund-, Oberflächen- und Klärwasserproben mittels RIMS untersucht. Oberhalb der Nachweisgrenze von ca. 10^7 Atomen Pu-239/500 mL konnte kein signifikanter Gehalt bestimmt werden. Zusätzlich wurden Klärschlammproben untersucht, wobei in einer Probe 5,1*10^7 Atome Pu-239/g gemessen wurde, was auf eine Anreicherung von Pu im Klärschlamm aus großen Wasservolumina hindeuten könnte. Speziationsuntersuchungen von Plutonium in Kontakt mit Fulvinsäure und dem Tonmineral Kaolinit wurden in Hinblick auf die Wechselwirkungen im Umfeld eines nuklearen Endlagers durchgeführt. Die Redoxkinetik von Pu(VI) in Kontakt mit Gorleben-Fulvinsäure zeigt eine mit steigendem pH zunehmend schnellere und vollständige Reduktion und ein vergleichbares Verhalten zur Huminsäure. Für ein Plutoniumgemisch aus allen vier umweltrelevanten Oxidationsstufen in Kontakt mit Gorleben-Fulvinsäure konnte nach ca. 1 Monat Kontaktzeit eine fasst vollständige Reduktion zum tri- und tetravalenten Pu beobachtet werden. Sorptionsuntersuchungen der stabilsten Oxidationsstufe, Pu(IV), in Kontakt mit Kaolinit bei pH = 0 bis 13 im Konzentrationsbereich 10^-7 bis 10^-9 mol/L verdeutlichen das ausgeprägte Sorptionsverhalten von Pu(IV) (ca. 60% bis 90% Sorption) im umweltrelevanten pH-Bereich bei einem Einsetzen der Sorption bei pH = 0 bis 2. Im Rahmen des "Colloid and Radionuclide Retardation" (CRR) Experiments im Felslabor Grimsel, Schweizer Alpen, wurde in Zusammenarbeit mit dem Institut für Nukleare Entsorgung, Karlsruhe, die kolloidgetragene Migration von Pu(IV) in einem Grundwasserstrom durch Scherzonen im Granitgestein unter umweltrelevanten Bedingungen untersucht. Bei Zugabe von im Grundwasser stabilen Bentonitkolloiden – Bentonit wird als ein geeignetes Verschlussmaterial für nukleare Abfälle erforscht – konnte ein erhöhter Transport des Pu(IV) beobachtet werden, der durch Sorption des Pu an die mobilen Kolloide hervorgerufen wird. Zur Speziation von Plutonium im Ultraspurenbereich wurde im Rahmen dieser Arbeit an der Entwicklung der Kopplung der CE mit der sehr sensitiven RIMS gearbeitet. Das Prinzip der offline-Kopplung basiert auf dem Sammeln der zu unterschiedlichen Zeiten am Ende der Kapillare eluierten Oxidationsstufen in einzelnen Fraktionen. Aus jeder Fraktion wird ein eigenes Filament hergestellt und mit RIMS auf seinen Plutoniumgehalt untersucht. Eine erste Validierung der Methode konnte durch Bestimmung der Oxidationsstufenzusammensetzung eines bekannten Gemischs erfolgreich für einen Gehalt von ca. 6*10^9 Atome Pu-239 durchgeführt werden. Dies stellt einen möglichen Zugang zu dem erwarteten Konzentrationsbereich im Fernfeld eines Endlagers dar.
Resumo:
In dieser Arbeit wurde die Elektronenemission von Nanopartikeln auf Oberflächen mittels spektroskopischen Photoelektronenmikroskopie untersucht. Speziell wurden metallische Nanocluster untersucht, als selbstorganisierte Ensembles auf Silizium oder Glassubstraten, sowie ferner ein Metall-Chalcogenid (MoS2) Nanoröhren-Prototyp auf Silizium. Der Hauptteil der Untersuchungen war auf die Wechselwirkung von fs-Laserstrahlung mit den Nanopartikeln konzentriert. Die Energie der Lichtquanten war kleiner als die Austrittsarbeit der untersuchten Proben, so dass Ein-Photonen-Photoemission ausgeschlossen werden konnte. Unsere Untersuchungen zeigten, dass ausgehend von einem kontinuierlichen Metallfilm bis hin zu Clusterfilmen ein anderer Emissionsmechanismus konkurrierend zur Multiphotonen-Photoemission auftritt und für kleine Cluster zu dominieren beginnt. Die Natur dieses neuen Mechanismus` wurde durch verschiedenartige Experimente untersucht. Der Übergang von einem kontinuierlichen zu einem Nanopartikelfilm ist begleitet von einer Zunahme des Emissionsstroms von mehr als eine Größenordnung. Die Photoemissions-Intensität wächst mit abnehmender zeitlicher Breite des Laserpulses, aber diese Abhängigkeit wird weniger steil mit sinkender Partikelgröße. Die experimentellen Resultate wurden durch verschiedene Elektronenemissions-Mechanismen erklärt, z.B. Multiphotonen-Photoemission (nPPE), thermionische Emission und thermisch unterstützte nPPE sowie optische Feldemission. Der erste Mechanismus überwiegt für kontinuierliche Filme und Partikel mit Größen oberhalb von mehreren zehn Nanometern, der zweite und dritte für Filme von Nanopartikeln von einer Größe von wenigen Nanometern. Die mikrospektroskopischen Messungen bestätigten den 2PPE-Emissionsmechanismus von dünnen Silberfilmen bei „blauer“ Laseranregung (hν=375-425nm). Das Einsetzen des Ferminiveaus ist relativ scharf und verschiebt sich um 2hν, wenn die Quantenenergie erhöht wird, wogegen es bei „roter“ Laseranregung (hν=750-850nm) deutlich verbreitert ist. Es zeigte sich, dass mit zunehmender Laserleistung die Ausbeute von niederenergetischen Elektronen schwächer zunimmt als die Ausbeute von höherenergetischen Elektronen nahe der Fermikante in einem Spektrum. Das ist ein klarer Hinweis auf eine Koexistenz verschiedener Emissionsmechanismen in einem Spektrum. Um die Größenabhängigkeit des Emissionsverhaltens theoretisch zu verstehen, wurde ein statistischer Zugang zur Lichtabsorption kleiner Metallpartikel abgeleitet und diskutiert. Die Elektronenemissionseigenschaften bei Laseranregung wurden in zusätzlichen Untersuchungen mit einer anderen Anregungsart verglichen, der Passage eines Tunnelstroms durch einen Metall-Clusterfilm nahe der Perkolationsschwelle. Die elektrischen und Emissionseigenschaften von stromtragenden Silberclusterfilmen, welche in einer schmalen Lücke (5-25 µm Breite) zwischen Silberkontakten auf einem Isolator hergestellt wurden, wurden zum ersten Mal mit einem Emissions-Elektronenmikroskop (EEM) untersucht. Die Elektronenemission beginnt im nicht-Ohmschen Bereich der Leitungsstrom-Spannungskurve des Clusterfilms. Wir untersuchten das Verhalten eines einzigen Emissionszentrums im EEM. Es zeigte sich, dass die Emissionszentren in einem stromleitenden Silberclusterfilm Punktquellen für Elektronen sind, welche hohe Emissions-Stromdichten (mehr als 100 A/cm2) tragen können. Die Breite der Energieverteilung der Elektronen von einem einzelnen Emissionszentrum wurde auf etwa 0.5-0.6 eV abgeschätzt. Als Emissionsmechanismus wird die thermionische Emission von dem „steady-state“ heißen Elektronengas in stromdurchflossenen metallischen Partikeln vorgeschlagen. Größenselektierte, einzelne auf Si-Substraten deponierte MoS2-Nanoröhren wurden mit einer Flugzeit-basierten Zweiphotonen-Photoemissions-Spektromikroskopie untersucht. Die Nanoröhren-Spektren wiesen bei fs-Laser Anregung eine erstaunlich hohe Emissionsintensität auf, deutlich höher als die SiOx Substratoberfläche. Dagegen waren die Röhren unsichtbar bei VUV-Anregung bei hν=21.2 eV. Eine ab-initio-Rechnung für einen MoS2-Slab erklärt die hohe Intensität durch eine hohe Dichte freier intermediärer Zustände beim Zweiphotonen-Übergang bei hν=3.1 eV.