5 resultados para Quark stars
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The present state of the theoretical predictions for the hadronic heavy hadron production is not quite satisfactory. The full next-to-leading order (NLO) ${cal O} (alpha_s^3)$ corrections to the hadroproduction of heavy quarks have raised the leading order (LO) ${cal O} (alpha_s^2)$ estimates but the NLO predictions are still slightly below the experimental numbers. Moreover, the theoretical NLO predictions suffer from the usual large uncertainty resulting from the freedom in the choice of renormalization and factorization scales of perturbative QCD.In this light there are hopes that a next-to-next-to-leading order (NNLO) ${cal O} (alpha_s^4)$ calculation will bring theoretical predictions even closer to the experimental data. Also, the dependence on the factorization and renormalization scales of the physical process is expected to be greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore make the comparison between theory and experiment much more significant. In this thesis I have concentrated on that part of NNLO corrections for hadronic heavy quark production where one-loop integrals contribute in the form of a loop-by-loop product. In the first part of the thesis I use dimensional regularization to calculate the ${cal O}(ep^2)$ expansion of scalar one-loop one-, two-, three- and four-point integrals. The Laurent series of the scalar integrals is needed as an input for the calculation of the one-loop matrix elements for the loop-by-loop contributions. Since each factor of the loop-by-loop product has negative powers of the dimensional regularization parameter $ep$ up to ${cal O}(ep^{-2})$, the Laurent series of the scalar integrals has to be calculated up to ${cal O}(ep^2)$. The negative powers of $ep$ are a consequence of ultraviolet and infrared/collinear (or mass ) divergences. Among the scalar integrals the four-point integrals are the most complicated. The ${cal O}(ep^2)$ expansion of the three- and four-point integrals contains in general classical polylogarithms up to ${rm Li}_4$ and $L$-functions related to multiple polylogarithms of maximal weight and depth four. All results for the scalar integrals are also available in electronic form. In the second part of the thesis I discuss the properties of the classical polylogarithms. I present the algorithms which allow one to reduce the number of the polylogarithms in an expression. I derive identities for the $L$-functions which have been intensively used in order to reduce the length of the final results for the scalar integrals. I also discuss the properties of multiple polylogarithms. I derive identities to express the $L$-functions in terms of multiple polylogarithms. In the third part I investigate the numerical efficiency of the results for the scalar integrals. The dependence of the evaluation time on the relative error is discussed. In the forth part of the thesis I present the larger part of the ${cal O}(ep^2)$ results on one-loop matrix elements in heavy flavor hadroproduction containing the full spin information. The ${cal O}(ep^2)$ terms arise as a combination of the ${cal O}(ep^2)$ results for the scalar integrals, the spin algebra and the Passarino-Veltman decomposition. The one-loop matrix elements will be needed as input in the determination of the loop-by-loop part of NNLO for the hadronic heavy flavor production.
Resumo:
In this thesis I concentrate on the angular correlations in top quark decays and their next--to--leading order (NLO) QCD corrections. I also discuss the leading--order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: $t(uparrow)rightarrow b+H^{+}$. The decay rate in this process is split into an angular independent part (unpolarized) and an angular dependent part (polar correlation). I provide closed form formulae for the ${mathcal O}(alpha_{s})$ radiative corrections to the unpolarized and the polar correlation functions for $m_{b}neq 0$ and $m_{b}=0$. The results for the unpolarized rate agree with the existing results in the literature. The results for the polarized correlations are new. I found that, for certain values of $tanbeta$, the ${mathcal O}(alpha_s)$ radiative corrections to the unpolarized, polarized rates, and the asymmetry parameter can become quite large. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: $t(uparrow) to X_b + ell^+ + nu_ell$. I analyze the angular correlations between the top quark spin and the momenta of the decay products in two different helicity coordinate systems: system 1a with the $z$--axis along the charged lepton momentum, and system 3a with the $z$--axis along the neutrino momentum. The decay rate then splits into an angular independent part (unpolarized), a polar angle dependent part (polar correlation) and an azimuthal angle dependent part (azimuthal correlation). I present closed form expressions for the ${mathcal O}(alpha_{s})$ radiative corrections to the unpolarized part and the polar and azimuthal correlations in system 1a and 3a for $m_{b}neq 0$ and $m_{b}=0$. For the unpolarized part and the polar correlation I agree with existing results. My results for the azimuthal correlations are new. In system 1a I found that the azimuthal correlation vanishes in the leading order as a consequence of the $(V-A)$ nature of the Standard Model current. The ${mathcal O}(alpha_{s})$ radiative corrections to the azimuthal correlation in system 1a are very small (around 0.24% relative to the unpolarized LO rate). In system 3a the azimuthal correlation does not vanish at LO. The ${mathcal O}(alpha_{s})$ radiative corrections decreases the LO azimuthal asymmetry by around 1%. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. This is demonstrated by the specific example of the polarized hyperon decay $Xi^0(uparrow) to Sigma^+ + l^- + bar{nu}_l$ ,($l^-=e^-, mu^-$) followed by the nonleptonic decay $Sigma^+ to p + pi^0$, which is described by a five--fold angular decay distribution.
Resumo:
This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N N and N Delta transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N Delta GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes.
Resumo:
In this thesis we investigate several phenomenologically important properties of top-quark pair production at hadron colliders. We calculate double differential cross sections in two different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI) kinematics. In pair invariant-mass kinematics we are able to present results for the double differential cross section with respect to the invariant mass of the top-quark pair and the top-quark scattering angle. Working in the threshold region, where the pair invariant mass M is close to the partonic center-of-mass energy sqrt{hat{s}}, we are able to factorize the partonic cross section into different energy regions. We use renormalization-group (RG) methods to resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy. On a technical level this is done using effective field theories, such as heavy-quark effective theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied when working in 1PI kinematics, leading to a calculation of the double differential cross section with respect to transverse-momentum pT and the rapidity of the top quark. We restrict the phase-space such that only soft emission of gluons is possible, and perform a NNLL resummation of threshold logarithms. The obtained analytical expressions enable us to precisely predict several observables, and a substantial part of this thesis is devoted to their detailed phenomenological analysis. Matching our results in the threshold regions to the exact ones at next-to-leading order (NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed order perturbation theory. We give numerical results for the invariant mass distribution of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum. We predict the total cross section, separately for both kinematics. Using these results, we analyze subleading contributions to the total cross section in 1PI and PIM originating from power corrections to the leading terms in the threshold expansions, and compare them to previous approaches. We later combine our PIM and 1PI results for the total cross section, this way eliminating uncertainties due to these corrections. The combined predictions for the total cross section are presented as a function of the top-quark mass in the pole, the minimal-subtraction (MS), and the 1S mass scheme. In addition, we calculate the forward-backward (FB) asymmetry at the Tevatron in the laboratory, and in the ttbar rest frames as a function of the rapidity and the invariant mass of the top-quark pair at NLO+NNLL. We also give binned results for the asymmetry as a function of the invariant mass and the rapidity difference of the ttbar pair, and compare those to recent measurements. As a last application we calculate the charge asymmetry at the LHC as a function of a lower rapidity cut-off for the top and anti-top quarks.
Resumo:
One of the fundamental interactions in the Standard Model of particle physicsrnis the strong force, which can be formulated as a non-abelian gauge theoryrncalled Quantum Chromodynamics (QCD). rnIn the low-energy regime, where the QCD coupling becomes strong and quarksrnand gluons are confined to hadrons, a perturbativernexpansion in the coupling constant is not possible.rnHowever, the introduction of a four-dimensional Euclidean space-timernlattice allows for an textit{ab initio} treatment of QCD and provides arnpowerful tool to study the low-energy dynamics of hadrons.rnSome hadronic matrix elements of interest receive contributionsrnfrom diagrams including quark-disconnected loops, i.e. disconnected quarkrnlines from one lattice point back to the same point. The calculation of suchrnquark loops is computationally very demanding, because it requires knowledge ofrnthe all-to-all propagator. In this thesis we use stochastic sources and arnhopping parameter expansion to estimate such propagators.rnWe apply this technique to study two problems which relay crucially on therncalculation of quark-disconnected diagrams, namely the scalar form factor ofrnthe pion and the hadronic vacuum polarization contribution to the anomalousrnmagnet moment of the muon.rnThe scalar form factor of the pion describes the coupling of a charged pion torna scalar particle. We calculate the connected and the disconnected contributionrnto the scalar form factor for three different momentum transfers. The scalarrnradius of the pion is extracted from the momentum dependence of the form factor.rnThe use ofrnseveral different pion masses and lattice spacings allows for an extrapolationrnto the physical point. The chiral extrapolation is done using chiralrnperturbation theory ($chi$PT). We find that our pion mass dependence of thernscalar radius is consistent with $chi$PT at next-to-leading order.rnAdditionally, we are able to extract the low energy constant $ell_4$ from thernextrapolation, and ourrnresult is in agreement with results from other lattice determinations.rnFurthermore, our result for the scalar pion radius at the physical point isrnconsistent with a value that was extracted from $pipi$-scattering data. rnThe hadronic vacuum polarization (HVP) is the leading-order hadronicrncontribution to the anomalous magnetic moment $a_mu$ of the muon. The HVP canrnbe estimated from the correlation of two vector currents in the time-momentumrnrepresentation. We explicitly calculate the corresponding disconnectedrncontribution to the vector correlator. We find that the disconnectedrncontribution is consistent with zero within its statistical errors. This resultrncan be converted into an upper limit for the maximum contribution of therndisconnected diagram to $a_mu$ by using the expected time-dependence of therncorrelator and comparing it to the corresponding connected contribution. Wernfind the disconnected contribution to be smaller than $approx5%$ of thernconnected one. This value can be used as an estimate for a systematic errorrnthat arises from neglecting the disconnected contribution.rn