14 resultados para Potential materials
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Der Fokus dieser Arbeit liegt in dem Design, der Synthese und der Charakterisierung neuartiger photosensitiver Mikrogele und Nanopartikel als potentielle Materialien für Beladungs- und Freisetzungsanwendungen. Zur Realisierung dieses Konzepts wurden verschiedene Ansätze untersucht.Es wurden neuartige niedermolekulare lichtspaltbare Vernetzermoleküle auf der Basis von o-Nitrobenzylderivaten synthetisiert, charakterisiert und zur Herstellung von photosensitiven PMMA und PHEMA Mikrogelen verwendet. Diese sind unter Bestrahlung in organischen Lösungsmitteln quellbar und zersetzbar. Durch die Einführung anionischer MAA Gruppen in solche PHEMA Mikrogele wurde dieses Konzept auf doppelt stimuliresponsive p(HEMA-co-MAA) Mikrogele erweitert. Hierbei wurde ein pH-abhängiges Quellbarkeitsprofil mit der lichtinduzierten Netzwerkspaltung in wässrigen Medien kombiniert. Diese duale Sensitivität zu zwei zueinander orthogonalen Reizen stellt ein vielversprechendes Konzept zur Kombination einer pH-abhängigen Beladung mit einer lichtinduzierten Freisetzung von funktionellen Substanzen dar. Desweiteren wurden PAAm Mikrogele entwickelt, welche sowohl eine Sensitivität gegenüber Enzymen als auch Licht aufweisen. Dieses Verhalten wurde durch die Verwendung von (meth-)acrylatfunktionalisierten Dextranen als polymere Vernetzungsmoleküle erreicht. Das entsprechende stimuliresponsive Profil basiert auf der enzymatischen Zersetzbarkeit der Polysaccharid-Hauptkette und der Anbindung der polymerisierbaren Vinyleinheiten an diese über photospaltbare Gruppen. Die gute Wasserlöslichkeit der Vernetzermoleküle stellt einen vielversprechenden Ansatz zur Beladung solcher Mikrogele mit funktionellen hydrophilen Substanzen bereits während der Partikelsynthese dar. Ein weiteres Konzept zur Beladung von Mikrogelen basiert auf der Verwendung von photolabilen Wirkstoff-Mikrogel Konjugaten. In einem ersten Schritt zur Realisierung solch eines Ansatzes wurde ein neuartiges Monomer entwickelt. Hierbei wurde Doxorubicin über eine lichtspaltbare Gruppe an eine polymerisierbare Methacrylatgruppe angebunden. Für die Freisetzung hydrophober Substanzen in wässrigen Medien wurden polymere Photolack-Nanopartikel entwickelt, welche sich unter Bestrahlung in Wasser zersetzen. Die lichtinduzierte Änderung der Hydrophobizität des Polymers ermöglichte die Freisetzung von Nilrot durch das Auflösen der partikulären Struktur. Ein interessanter Ansatz zur Verhinderung einer unkontrollierten Freisetzung funktioneller Substanzen aus Mikrogelen ist die Einführung einer stimuliresponsiven Schale. In diesem Kontext wurden Untersuchungen zur Bildung von nicht-stimulisensitiven Schalen um vorgefertigte Mikrogelkerne und zur Synthese von Hydrogelkernen in vorgefertigten polymeren Schalen (Nanokapseln) durchgeführt.
Resumo:
A series of oligo-phenylene dendronised conjugated polymers was prepared. The divergent synthetic approach adopted allowed for the facile synthesis of a range of dendronised monomers from a common intermediate, e.g. first and second generation fluorene. Only the polymerisation of the first generation and alkylarylamine substituted dendronised fluorene monomers yielded high molecular weight materials, attributed to the low solubility of the remaining dendronised monomers. The alkylarylamine substituted dendronised poly(fluorene) was incorporated into an organic light emitting diode (OLED) and exhibited an increased colour stability in air compared to other poly(fluorenes). The concept of dendronisation was extended to poly(fluorenone), a previously insoluble material. The synthesis of the first soluble poly(fluorenone) was achieved by the incorporation of oligo-phenylene dendrons at the 4-position of fluorenone. The dendronisation of fluorenone allowed for a polymer with an Mn of 4.1 x 104 gmol-1 to be prepared. Cyclic voltammetry of the dendronised poly(fluorenone) showed that the electron affinity of the polymer was high and that the polymer is a promising n-type material. A dimer and trimer of indenofluorene (IF) were prepared from the monobromo IF. These oligomers were investigated by 2-dimensional wide angle x-ray spectroscopy (2D-WAXS), polarised optical microscopy (POM) and dielectric spectroscopy, and found to form highly ordered smetic phases. By attaching perylene dye as the end-capper on the IF oligomers, molecules that exhibited efficient Förster energy transfer were obtained. Indenofluorene monoketone, a potential defect structure for IF based OLED’s, was synthesised. The synthesis of this model defect structure allowed for the long wavelength emission in OLED’s to be identified as ketone defects. The long wavelength emission from the indenofluorene monoketone was found to be concentration dependent, and suggests that aggregate formation is occurring. An IF linked hexa-peri-hexabenzocoronene (HBC) dimer was synthesised. The 2D-WAXS images of this HBC dimer demonstrate that the molecule exhibits intercolumnar organisation perpendicular to the extrusion direction. POM images of mixtures of the HBC dimer mixed with an HBC with a low isotropic temperature demonstrated that the HBC dimer is mixing with the isotropic HBC.
Resumo:
Conjugated polymers are macromolecules that possess alternating single and double bonds along the main chain. These polymers combine the optoelectronic properties of semiconductors with the mechanical properties and processing advantages of plastics. In this thesis we discuss the synthesis, characterization and application of polyphenylene-based materials in various electronic devices. Poly(2,7-carbazole)s have the potential to be useful as blue emitters, but also as donor materials in solar cells due to their better hole-accepting properties. However, it is associated with two major drawbacks (1) the emission maximum occurs at 421 nm where the human eye is not very sensitive and (2) the 3- and 6- positions of carbazole are susceptible to chemical or electrochemical degradation. To overcome these problems, the ladder-type nitrogen-bridged polymers are synthesized. The resulting series of polymers, nitrogen-bridged poly(ladder-type tetraphenylene), nitrogen-bridged poly(ladder-type pentaphenylene), nitrogen-bridged poly(ladder-type hexaphenylene) and its derivatives are discussed in the light of photophysical and electrochemical properties and tested in PLEDs, solar cell, and OFETs. A promising trend which has emerged in recent years is the use of well defined oligomers as model compounds for their corresponding polymers. However, the uses of these molecules are many times limited by their solubility and one has to use vapor deposition techniques which require high vacuum and temperature and cannot be used for large area applications. One solution to this problem is the synthesis of small molecules having enough alkyl chain on the backbone so that they can be solution or melt processed and has the ability to form thin films like polymers as well as retain the high ordered structure characteristics of small molecules. Therefore, in the present work soluble ladderized oligomers based on thiophene and carbazole with different end group were made and tested in OFET devices. Carbazole is an attractive raw material for the synthesis of dyes since it is cheap and readily available. Carbazoledioxazine, commercially known as violet 23 is a representative compound of dioxazine pigments. As part of our efforts into developing cheap alternatives to violet 23, the synthesis and characterization of a new series of dyes by Buchwald-type coupling of 3-aminocarbazole with various isomers of chloroanthraquinone are presented.
Resumo:
The goal of this thesis was the investigation of the structure, conformation, supramolecular order and molecular dynamics of different classes of functional materials (phthalocyanine, perylene and hexa-peri-hexabenzocoronene derivatives and mixtures of those), all having planar aromatic cores modified with various types of alkyl chains. The planar aromatic systems are known to stack in the solid and the liquid-crystalline state due to p-p interactions forming columnar superstructures with high one-dimensional charge carrier mobility and potential application in photovoltaic devices. The different functionalities attached to the aromatic cores significantly influence the behavior of these systems allowing the experimentalists to modify the structures to fine-tune the desired thermotropic properties or charge carrier mobility. The aim of the presented studies was to understand the interplay between the driving forces causing self-assembly by relating the structural and dynamic information about the investigated systems. The supramolecular organization is investigated by applying 1H solid state NMR recoupling techniques. The results are related with DSC and X-ray scattering data. Detailed information about the site-specific molecular dynamics is gained by recording spinning sideband patterns using 1H-1H and 13C-1H solid state NMR recoupling techniques. The determined dipole-dipole coupling constants are then related with the coupling constants of the respective rigid pairs, thus providing local dynamic order parameters for the respective moieties. The investigations presented reveal that in the crystalline state the preferred arrangement in the columnar stack of discotic molecules modified with alkyl chains is tilted. This leads to characteristic differences in the 1H chemical shifts of otherwise chemically equivalent protons. Introducing branches and increasing the length of the alkyl chains results in lower mesophase transitions and disordered columnar stacks. In the liquid-crystalline state some of the discs lose the tilted orientation, others do not, but all start a rapid rotation about the columnar axis.
Resumo:
Discotic hexa-peri-hexabenzocoronene (HBC) derivatives have attracted intensive scientific interest due to their unique optoelectronic properties, which depends, to a large extend, upon the attached functional groups. The presented work covers the synthesis of novel HBC building blocks and new HBC derivatives as functional materials. The traditional preparation of HBC derivatives requires elaborate synthetic techniques and tremendous effort. Especially, more than 10 synthetic steps are usually necessary to approach HBCs with lower symmetries. In order to simplify the synthetic work and reduce the high costs, a novel synthetic strategy involving only four steps was developed based on 2,3,5,6-tetraphenyl-1,4-diiodobenzene intermediates and palladium catalyzed Suzuki cross coupling reactions. In order to introduce various functionalities and expand the diversity of multi-functionalizations, a novel C2v-symmetric dihalo HBC building block 2-47, which contains one iodine and one bromine in para positions, was prepared following the traditional intermolecular [4+2] Diels-Alder reaction route. The outstanding chemical selectivity between iodo and bromo groups in this compound consequently leads to lots of HBC derivatives bearing different functionalities. Directly attached heteroatoms will improve the material properties. According to the application of intramolecular Scholl reaction to a para-dimethoxy HPB, which leads to a meta-dimethoxy HBC, a phenomenon of phenyl group migration was discovered. Thereby, several interesting mechanistic details involving arenium cation intermediates were discussed. With a series of dipole functionalized HBCs, the molecular dynamics of this kind of materials was studied in different phases by DSC, 2D WAXD, solid state NMR and dielectric spectroscopies. High charge carrier mobility is an important parameter for a semiconductive material and depends on the degree of intramolecular order of the discotic molecules in thin films for HBC derivatives. Dipole – dipole interaction and hydrogen bonds were respectively introduced in order to achieve highly ordered supramolecular structure. The self-assembly behavior of these materials were investigated both in solution and solid state. Depending upon the different functionalities, these novel materials show either gelating or non-linear optical properties, which consequently broaden their applications as functional materials. In the field of conceivable electronic devices at a molecular level, HBCs hold high promise. Differently functionalized HBCs have been used as active component in the studies of single-molecular CFET and metal-SAMs-metal junctions. The outstanding properties shown in these materials promise their exciting potential applications in molecular devices.
Resumo:
This thesis presents the versatile synthesis and self-organization of C3-symmetric discotic nanographene molecules as well as their potential applications as materials in molecular electronics. The details can be described as follows: 1) A novel synthetic strategy towards properly designed C3 symmetric 1,3,5-tris-2’arylbenzene precursors has been developed. After the final planarization by treatment with FeCl3 under mild conditions, for the first time, it became possible to access a variety of new C3-symmetric hexa-peri-hexabenzocoronenes (HBCs) and a series of triangle-shaped nanographenes. D3 symmetric HBC with three alkyl substituents and C2 symmetric HBC with two alkyl substituents were synthesized and found to show the surprising decrease of isotropic points., the self-assembly at the liquid-solid interface displayed a unique zigzag and flower patterns. 2) Triangle-shaped discotics revealed a unique self-assembly behavior in solution, solid state as well as at the solution-substrate interface. A mesophase stability over the broad temperature range with helical supramoelcular arrangement were observed in the bulk state. The honeycomb pattern as the result of novel self-assembly was presented. Triangle-shaped discotics with swallow alkyl tails were fabricated into photovoltaic devices, the supramolecular arrangement upon thermal treatment was found to play a key role in the improvement of solar efficiency. 3) A novel class of C3 symmetric HBCs with alternating polar/apolar substituents was synthesized. Their peculiar self-assembly in solution, in the bulk and on the surface were investigated by NMR techniques, X-ray diffraction as well as different electron microscope techniques. 4) A novel concept for manipulating the intracolumnar stacking of discotics and thus for controlling the helical pitch was presented. A unique staggered stacking in the column was achieved for the first time. Theoretical simulations confirmed this self-organization and predicted that this packing should show the highest charge carrier mobility for all discotics.
Resumo:
This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods.rnrnrnIn the case of the hydrogen storage system lithium amide/imide (LiNH_2/Li_2NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state 1H-NMR chemical shifts was observed. Specifically, the structure of Li_2NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus.rnrnOn the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding network in the material. The results indicate that these water molecules are essential for the effectiveness of proton conduction. A water-mediated Grotthuss mechanism is identified as the main contributor to proton conduction, which agrees with the experimentally observed decay on conductivity for the same material in the absence of water molecules.rnrnThe gain in understanding the microscopic processes and structures present in this materials can help the development of new materials with improved properties, thus contributing to the solution of problems in the implementation of fuel cells.
Resumo:
Stabile Radikale haben in vielen Bereichen der Chemie, Physik, Biologie und Biomedizin ihren Nutzen unter Beweis gestellt. Gerade im letzten Jahrzehnt erlebte diese Substanzklasse vor allem wegen den Anwendungsmöglichkeiten von Nitroxiden als Red-Ox-Sensoren oder magnetischen Materialen ein erneutes Interesse. Das erste Kapitel beschäftigt sich mit der grundlegenden Theorie zur Entwicklung magnetischer Materialien. Des Weiteren sollen anhand einiger Beispiele Radikale im Komplex mit paragmagnetischen Metallen, Biradikale und Polyradikale beschrieben werden. rnrnIm zweiten Kapitel soll auf die Synthese von Hybrid Fluorophore-Nitrononyl-Nitroxid und Iminonitroxidradiale, sowie ihre Charakterisierung über IR, CV, EPR und Röntgenstrukturanalyse eingegangen werden. Mittels UV/Vis-Spektroskopie soll hierbei eine mögliche Anwendung als Red-Ox-Sensoren festgestellt werden. Hierbei werden über anschließende PL Untersuchungen eben diese Sensoreigenschaften der dargestellten Radikale bestätigt werden. Vielmehr noch soll die Möglichkeit von Pyren-Pyrazol-Nitronyl-Nitroxid als NO-Nachweis erläutert werden.rnrnFortschritte sowohl im Design als auch in der Analyse von magnetischen Materialen auf der Basis von Nitroxiden ist Thema des dritten Kapitels. Über ein klassisches Ullmann-Protokoll wurden verschiedene Nitronyl-Nitroxid und Iminonitroxid Biradiale mit unterschiedlichen π-Brücken zwischen den Radikalzentren synthetisiert. Magnetische Messungen belegen einen relativ starken antiferromagnetischen intramolekularen Austausch für den Großteil der untersuchten Biradikale. Hierbei zeigte sich jedoch eine außergewöhnliche hohe Austausch-Kupplung für 3,3‘-Diazatolandiradikale, die nur über die Existenz von starken intermolekularen Wechselwirkungen beschrieben werden kann. Durch Kombination der Röntgenstrukturanalyse mit DFT Berechnungen konnte im Fall des Tolan verbrückten Diradikals 87c die Intra-Dimer-Kupplung auf Jintra = -8,6 K bestimmt werden. Ein direkter Beweis für eine intermolekulare Anlagerung von Jinter ~- 2K konnte über eine Tieftemperatur AC-Messung von 87c erhalten werden. Bezüglich der magnetischen Messung ist das Nitronyl Biradikal 87c ein vielversprechender Kandidat für einen rein organischen eindimensionalen Quantenmagnet.rnrnAbsicht dieser Untersuchungen ist es zu zeigen, dass über die Kombination verschiedener struktureller Elemente die Sensitivität von Nitroxid basierten Sensoren und die intramolekulare Austauschwechselwirkung in π-konjugierten Spinsystemen so eingestellt werden kann, dass es möglich ist Moleküle mit gezielten Sensor- oder Magneteigenschaften zu entwickeln. rn
Resumo:
Funktionelle Materialien sind in einer Vielzahl von Materialklassen wie Polymeren, Biomaterialien, Gläsern, Metallen, Keramiken und Verbundwerkstoffen anzutreffen. Sie besitzen eine spezifische, intrinsische Funktion, welche auf dem zu Grunde liegenden Design der Verbindung beruht. In dieser Dissertation wurden zwei funktionelle Materialien studiert: ein durch Phosphonatadditive mechanisch verstärktes Epoxidharz und protonenleitende Blockcopolymere, welche Potential für den Einsatz in Brennstoffzellen besitzen. Die Materialien wurden vorranging mittels Festkörper Kernspinresonanzspektroskopie (NMR) untersucht, welche sich besonders für die Untersuchung der lokalen Struktur und Dynamik amorpher Polymere eignet.rnrnPhosphonate sind eine neue Klasse sogenannter molekularer Verstärker, die die mechanischen und thermischen Kennzahlen geeigneter Epoxidharze erhöhen. Es wurde eine Reihe von Phosphonatderivaten synthetisiert um systematische den Effekt der chemischen Struktur und des Aushärteprozesses auf die Eigenschaften eines Modellepoxidharzes zu untersuchen. Die Aufklärung des Verstärkungsmechanismus ergab, dass die Phosphonate währen der thermischen Aushärtung des Epoxidharzes die Aminofunktionalitäten des Härters alkylieren. Dies führt zu der Bildung von homogen verteilten, positiven Ladungen auf der Polymerkette, während negative Phosphonatanionen als Gegenionen wirken. Es konnte gezeigt werden, dass die Struktur des Additivs einen entscheidenden Einfluss auf die Eigenschaften des ausgehärteten Epoxidharzes sowie seine Alterung, d.h. den allmählichen Verlust der Verstärkung, hat.rnrnDes Weiteren wurde eine Serie von sulfonierten Blockcopolymeren synthetisiert. Es handelte sich hierbei um Multiblockcopolyimide, wobei die Polymerketten aus einer alternierenden Sequenz von sulfonierten (hydrophilen) und unsulfonierten (hydrophoben) Blöcken bestanden. Diese Polymere bilden nach einem ‚solvent cast‘ Prozess feste, duktile und transparente Membrane. Sulfonierte Blockcopolymermembrane zeigten im Vergleich mit statistisch sulfonierten Vergleichssubstanzen eine erhöhte Leitfähigkeit, sowie eine erhöhte Wasseraufnahme. Dies wurde auf eine bessere Phasenseparation im Festkörper zurückgeführt. Die Morphologie der Filme war eindeutig anisotrop und stark abhängig von der Blocklänge der Polymere. Durch diverse Festkörper-NMR Methoden konnte gezeigt werden, dass die Protonenmobilität in den Membranen von der betrachteten Längenskala abhängig ist und nicht notwendigerweise mit der makroskopisch beobachteten Leitfähigkeit korreliert.
Resumo:
Diese Arbeit hat viele beispiellose synthetische Ansätze für neuartige Verbundwerkstoffe Graphen-und stickstoffhaltigen graphitischen Materialien erforscht. Die erhaltenen Materialien wurden als den transparenten Elektroden der Solarzellen, die freistehenden Elektroden mit verbesserter mechanischer Festigkeit, und die Kathoden der Brennstoffzellen der Sauerstoffreduktion aufgebracht.rnAlle Ergebnisse haben eindeutig das große Potenzial von Graphen basierenden Materialien und stickstoffhaltigen graphitische Kohlenstoffe als neuartige Elektrodenmaterialien für neue Energie-Geräten demonstriert.
Resumo:
Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.
Resumo:
Die Bildung kieselsäurehaltiger Spicula in marinen Schwämmen ist nur möglich durch die enzymatische Aktivität des Silicatein- in Verbindung mit der stöchiometrischen Selbstassemblierung des Enzyms mit anderen Schwammproteinen. Die vorliegende Arbeit basiert auf einem biomimetischen Ansatz mit dem Ziel, unterschiedliche Oberflächen für biotechnologische und biomedizinische Anwendungen mit Biosilica und Biotitania zu beschichten und zu funktionalisieren. Für biotechnologische Anwendungen ist dabei das Drucken von Cystein-getaggtem Silicatein auf Gold-Oberflächen von Bedeutung, denn es ermöglichte die Bildung definierter Biotitania-Strukturen (Anatas), welche als Photokatalysator den Abbau eines organischen Farbstoffs bewirkten. Des Weiteren zeigte sich die bio-inspirierte Modifikation von Tyrosin-Resten an rekombinantem Silicatein-(via Tyrosinase) als vielversprechendes Werkzeug zur Beschleunigung der Selbstassemblierung des Enzyms zu mesoskaligen Filamenten. Durch eine solche Modifikation konnte Silicatein auch auf der Oberfläche von anorganischen Partikeln immobilisiert werden, welches die Assemblierung von anorganisch-organischen Verbundwerkstoffen in wäßriger Umgebung förderte. Die resultierenden supramolekularen Strukturen könnten dabei in bio-inspirierten und biotechnologischen Anwendungen genutzt werden. Weiterhin wurde in der vorliegenden Arbeit die Sekundärstruktur von rekombinantem Silicatein- (Monomer und Oligomer) durch Raman Spektroskopie analysiert, nachdem das Protein gemäß einer neu etablierten Methode rückgefaltet worden war. Diese Spektraldaten zeigten insbesondere Änderungen der Proteinkonformation durch Solubilisierung und Oligomerisierung des Enzyms. Außerdem wurden die osteoinduzierenden und osteogenen Eigenschaften unterschiedlicher organischer Polymere, die herkömmlich als Knochenersatzmaterial genutzt werden, durch Oberflächenmodifikation mit Silicatein/Biosilica verbessert: Die bei der Kultivierung knochenbildender Zellen auf derart oberflächenbehandelten Materialien beobachtete verstärkte Biomineralisierung, Aktivierung der Alkalischen Phosphatase, und Ausbildung eines typischen zellulären Phänotyps verdeutlichen das Potential von Silicatein/Biosilica für der Herstellung neuartiger Implantat- und Knochenersatzmaterialien.
Resumo:
Chapter 1 of this thesis comprises a review of polyether polyamines, i.e., combinations of polyether scaffolds with polymers bearing multiple amino moieties. Focus is laid on controlled or living polymerization methods. Furthermore, fields in which the combination of cationic, complexing, and pH-sensitive properties of the polyamines and biocompatibility and water-solubility of polyethers promise enormous potential are presented. Applications include stimuli-responsive polymers with a lower critical solution temperature (LCST) and/or the ability to gel, preparation of shell cross-linked (SCL) micelles, gene transfection, and surface functionalization.rnIn Chapter 2, multiaminofunctional polyethers relying on the class of glycidyl amine comonomers for anionic ring-opening polymerization (AROP) are presented. In Chapter 2.1, N,N-diethyl glycidyl amine (DEGA) is introduced for copolymerization with ethylene oxide (EO). Copolymer microstructure is assessed using online 1H NMR kinetics, 13C NMR triad sequence analysis, and differential scanning calorimetry (DSC). The concurrent copolymerization of EO and DEGA is found to result in macromolecules with a gradient structure. The LCSTs of the resulting copolymers can be tailored by adjusting DEGA fraction or pH value of the environment. Quaternization of the amino moieties by methylation results in polyelectrolytes. Block copolymers are used for PEGylated gold nanoparticle formation. Chapter 2.2 deals with a glycidyl amine monomer with a removable protecting group at the amino moiety, for liberation of primary amines at the polyether backbone, which is N,N-diallyl glycidyl amine (DAGA). Its allyl groups are able to withstand the harsh basic conditions of AROP, but can be cleaved homogeneously after polymerization. Gradient as well as block copolymers poly(ethylene glycol)-PDAGA (PEG-PDAGA) are obtained. They are analyzed regarding their microstructure, LCST behavior, and cleavage of the protecting groups. rnChapter 3 describes applications of multi(amino)functional polyethers for functionalization of inorganic surfaces. In Chapter 3.1, they are combined with an acetal-protected catechol initiator, leading to well-defined PEG and heteromultifunctional PEG analogues. After deprotection, multifunctional PEG ligands capable of attaching to a variety of metal oxide surfaces are obtained. In a cooperative project with the Department of Inorganic and Analytical Chemistry, JGU Mainz, their potential is demonstrated on MnO nanoparticles, which are promising candidates as T1 contrast agents in magnetic resonance imaging. The MnO nanoparticles are solubilized in aqueous solution upon ligand exchange. In Chapter 3.2, a concept for passivation and functionalization of glass surfaces towards gold nanorods is developed. Quaternized mPEG-b-PqDEGA diblock copolymers are attached to negatively charged glass surfaces via the cationic PqDEGA blocks. The PEG blocks are able to suppress gold nanorod adsorption on the glass in the flow cell, analyzed by dark field microscopy.rnChapter 4 highlights a straightforward approach to poly(ethylene glycol) macrocycles. Starting from commercially available bishydroxy-PEG, cyclic polymers are available by perallylation and ring-closing metathesis in presence of Grubbs’ catalyst. Purification of cyclic PEG is carried out using α-cyclodextrin. This cyclic sugar derivative forms inclusion complexes with remaining unreacted linear PEG in aqueous solution. Simple filtration leads to pure macrocycles, as evidenced by SEC and MALDI-ToF mass spectrometry. Cyclic polymers from biocompatible precursors are interesting materials regarding their increased blood circulation time compared to their linear counterparts.rnIn the Appendix, A.1, a study of the temperature-dependent water-solubility of polyether copolymers is presented. Macroscopic cloud points, determined by turbidimetry, are compared with microscopic aggregation phenomena, monitored by continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in presence of the amphiphilic spin probe and model drug (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). These thermoresponsive polymers are promising candidates for molecular transport applications. The same techniques are applied in Chapter A.2 to explore the pH-dependence of the cloud points of PEG-PDEGA copolymers in further detail. It is shown that the introduction of amino moieties at the PEG backbone allows for precise manipulation of complex phase transition modes. In Chapter A.3, multi-hydroxyfunctional polysilanes are presented. They are obtained via copolymerization of the acetal-protected dichloro(isopropylidene glyceryl propyl ether)methylsilane monomer. The hydroxyl groups are liberated through acidic work-up, yielding versatile access to new multifunctional polysilanes.
Resumo:
The corrosion of metallic materials is a crucial issue on an economical and ecological scale. Corrosion protection becomes then necessarily needed. The main focus of the thesis is to develop stimuli-responsive nanocontainers for self-healing in corrosion protection. A nanocontainer is efficient if distinct payloads can be selectively released via different stimuli because unwanted and unspecific release can be avoided. For anti-corrosion, the wanted nanocontainer is the one able to release its self-healing agents or corrosion inhibitors upon change of pH- or/and redox-potential due to the variation of these two signals at the corroded sites. Conducting polymers such as polyaniline (PANI) were chosen for building the shell of capsules due to their important characteristics of being both pH- and redox responsive.