30 resultados para Poly (ethylene glycol)

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene glycol) (PEG) is used in a broad range of applications due to its unique combination of properties and is approved use in formulations for body-care products, edibles and medicine. This thesis aims at the synthesis and characterization of novel heterofunctional PEG structures and the establishment of diethyl squarate as a suitable linker for the covalent attachment to proteins. Chapter 1 is an introduction on the properties and applications of PEG as well as the fascinating chemistry of squaric acid derivatives. In Chapter 1.1, the synthesis and properties of PEG are described, and the versatile applications of PEG derivatives in everyday products are emphasized with a focus on PEG-based pharmaceuticals and nonionic surfactants. This chapter is written in German, as it was published in the German Journal Chemie in unserer Zeit. Chapter 1.2 deals with PEGs major drawbacks, its non-biodegradability, which impedes parenteral administration of PEG conjugates with polyethers exceeding the renal excretion limit, although these would improve blood circulation times and passive tumor targeting. This section gives a comprehensive overview of the cleavable groups that have been implemented in the polyether backbone to tackle this issue as well as the synthetic strategies employed to accomplish this task. Chapter 1.3 briefly summarizes the chemical properties of alkyl squarates and the advantages in protein conjugation chemistry that can be taken from its use as a coupling agent. In Chapter 2, the application of diethyl squarate as a coupling agent in the PEGylation of proteins is illustrated. Chapter 2.1 describes the straightforward synthesis and characterization of squaric acid ethyl ester amido PEGs with terminal hydroxyl functions or methoxy groups. The reactivity and selectivity of theses activated PEGs are explored in kinetic studies on the reactions with different lysine and other amino acid derivatives, followed by 1H NMR spectroscopy. Further, the efficient attachment of the novel PEGs to a model protein, i.e., bovine serum albumin (BSA), demonstrates the usefulness of the new linker for the PEGylation with heterofunctional PEGs. In Chapter 2.3 initial studies on the biocompatibility of polyether/BSA conjugates synthesized by the squaric acid mediated PEGylation are presented. No cytotoxic effects on human umbilical vein endothelial cells exposed to various concentrations of the conjugates were observed in a WST-1 assay. A cell adhesion molecule - enzyme immunosorbent assay did not reveal the expression of E-selectin or ICAM-1, cell adhesion molecules involved in inflammation processes. The focus of Chapter 3 lies on the syntheses of novel heterofunctional PEG structures which are suitable candidates for the squaric acid mediated PEGylation and exhibit superior features compared to established PEGs applied in bioconjugation. Chapter 3.1 describes the synthetic route to well-defined, linear heterobifunctional PEGs carrying a single acid-sensitive moiety either at the initiation site or at a tunable position in the polyether backbone. A universal concept for the implementation of acetal moieties into initiators for the anionic ring-opening polymerization (AROP) of epoxides is presented and proven to grant access to the degradable PEG structures aimed at. The hydrolysis of the heterofunctional PEG with the acetal moiety at the initiating site is followed by 1H NMR spectroscopy in deuterium oxide at different pH. In an exploratory study, the same polymer is attached to BSA via the squarate acid coupling and subsequently cleaved from the conjugate under acidic conditions. Furthermore, the concept for the generation of acetal-modified AROP initiators is demonstrated to be suitable for cholesterol, and the respective amphiphilic cholesteryl-PEG is cleaved at lowered pH. In Chapter 3.2, the straightforward synthesis of α-amino ω2-dihydroxyl star-shaped three-arm PEGs is described. To assure a symmetric length of the hydroxyl-terminated PEG arms, a novel AROP initiator is presented, who’s primary and secondary hydroxyl groups are separated by an acetal moiety. Upon polymerization of ethylene oxide for these functionalities and subsequent cleavage of the acid-labile unit no difference in the degree of polymerization is seen for both polyether fragments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylenglykol) (PEG) ist eines der wichtigsten Polymere für pharmazeutische und biomedizinische Zwecke. Dies lässt sich vor allen Dingen auf seine ausgezeichnete Biokompatibilität, seine hohe chemische Stabilität sowie seine sehr gute Wasserlöslichkeit zurückführen. Neben seiner Anwendung in Produkten wie Lebensmitteln und Kosmetika ist PEG vor allem im pharmazeutischen Bereich unersetzlich geworden. Hier dient PEG als Grundlage für Salben, es kommt aber auch in der sogenannten „PEGylierung“ zum Einsatz. Unter PEGylierung versteht man die kovalente Verknüpfung von PEG mit Wirkstoffmolekülen, beispielsweise Proteinen oder niedermolekularen Medikamenten. In der akademischen Forschung sind aber auch PEGylierte Nanopartikel oder durch PEG stablisierte Liposomen für die Applikation im Bereich der Medizin von hohem Interesse. Trotz seiner breiten Verwendung hat PEG zwei entscheidende Nachteile: Zum einen benötigt man gerade im Hinblick auf PEGylierungen viele funktionelle Gruppe, jedoch trägt PEG maximal zwei Hydroxyl-Gruppen (die Endgruppen), die für kovalente Verknüpfungen genutzt werden können. Zum anderen ist PEG nicht in physiologischer Umgebung abbaubar und kann daher in vivo oberhalb eines Molekulargewichts von 40 000 g/mol nicht eingesetzt werden, da sonst eine Ausscheidung über die Niere nicht möglich ist und eine ungewollte Anreicherung im Körper stattfindet.rnDie durch die geringe Anzahl an Endgruppen limitierte Beladungsdichte kann durch das Design neuer Epoxid-Derivate und deren statistischen Einbau in das PEG Rückgrat deutlich verbessert werden. Im ersten Teil dieser Arbeit werden drei neuartige funktionelle Oxirane vorgestellt, die systematisch mit Ethylenoxid copolymerisiert wurden, was die selektive Einführung verschiedener funktioneller Gruppen am Polymerrückgrat ermöglicht. Im Vordergrund der Betrachtungen standen die Eigenschaften der neuartigen multifunktionellen (mf)-PEG Copolymere im Hinblick auf ihr thermisches Verhalten sowie die Verteilung der funktionellen Gruppen (Mikrostruktur) innerhalb des PEG-Rückgrats. Die gezielte Adressierbarkeit der funktionellen Gruppen konnte durch verschiedene Modellreaktionen bestätigt werden. Darüber hinaus konnte gezeigt werden, dass sich mit der vorgestellten Synthesestrategie komplexe Hybridmaterialien, beispielsweise metallhaltige Polyether, darstellen lassen. Mit Hinblick auf die biomedizinischen Anwendungen und die Konkurrenz zu etablierten PEG-Hompolymeren, standen die Wasserlöslichkeit und die Toxizität der synthetisierten Materialien im Zentrum weiterer Untersuchungen. Alle dargestellten Polymere zeigten einen Trübungspunkt in Wasser, der sich in Abhängigkeit der Zusammensetzung und Hydrophobizität der Comonomere über ein weites Temperaturspektrum variieren und somit systematisch einstellen ließ. Die Toxizität der statistischen mf-PEGs lag im Bereich von PEG, was die mf-PEGs interessant für biomedizinische Anwendung macht.rnIm zweiten Teil der Arbeit wurden Copolymerisationen verwendet, um über erstmals hergestellte Epoxid-Inimere sauer spaltbare Einheiten in das Polyetherrückgrat einzuführen. Die neuen, verzweigten Strukturen wurden auf die Zersetzung in physiologisch relevantem Milieu untersucht. Die erzielte pH-abhängige Spaltbarkeit, kann für potenzielle Anwendungen beispielsweise in der Krebstherapie, von Vorteil sein.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der erste Teil der vorliegenden Dissertation beschäftigt sich mit der Eignung des ?,?-dithiolfunktionalisierten Poly(para-phenylenethinylen)s (PPE) als sogenannter „molekularer Draht“ für die molekulare Elektronik. Über die HECK-CASSAR-SONOGASHIRA-Reaktion wurden vollständig endfunktionalisierte, defektfreie Polymere mit durchschnittlichen Polymerisationsgraden von bis zu 45 Repetitionseinheiten synthetisiert. Die starke Aggregationsneigung der PPE, die die Anordnung der Polymerketten zwischen den Goldelektroden unterstützen soll, wurde mittels Rasterkraft- und Rastertunnelmikroskopie untersucht. Für die Untersuchungen zur Dotierbarkeit wurden ESR-, ENDOR-, UPS- und XPS-Messungen durchgeführt. Es konnte gezeigt werden, dass sich das PPE reduzieren lässt.Im zweiten Teil der Arbeit wurden die PPE zur Synthese von Stäbchen-Knäuel-Diblockcopolymeren eingesetzt. Die Darstellung erfolgte nach der 'grafting onto'-Methode, indem monocarboxyl-endfunktionalisiertes PPE mit flexiblen monohydroxyl-endfunktionalisiertem Polyethylenglykol, Polydimethylsulfoxid bzw. Polytetrahydrofuran verestert wurde. Den Nachweis der Diblockcopolymerbildung erbrachten die 1H?NMR-Spektroskopie und die für Diblockcopolymere noch wenig angewandte MALDI-TOF-Massenspektrometrie. Mittels Rasterkraftmikroskopie und Computersimulationen zur Molekularmechanik und -dynamik wurden die Aggregationseigenschaften der Diblockcopolymere untersucht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work supramolecular organic systems based on rigid pi-conjugated building blocks and flexible side chains were studied via solid-state NMR spectroscopy. Specifically, these studies focussed on phenylene ethynylene based macrocycles, polymer systems including polythiophenes, and rod-coil copolymers of oligo(p-benzamide) and poly(ethylene glycol). All systems were studied in terms of the local order and mobility. The central topic of this dissertation was to elucidate the role of the flexible side chains in interplay of different non-covalent interactions, like pi-pi-stacking and hydrogen bonding.Combining the results of this work, it can be concluded that the ratio of the rigid block and the attached alkyl side chains can be crucial for the design of an ordered pi-conjugated supramolecular system. Through alkyl side chains, it is also possible to introduce liquid-crystalline phases in the system, which can foster the local order of the system. Moreover in the studied system longer, unbranched alkyl side chains are better suited to stabilize the corresponding aggregation than shorter, branched ones.The combination of non-covalent interactions such as pi-pi-stacking and hydrogen bonding play an important role for structure formation. However, the effect of pi-pi-stacking interaction is much weaker than the effect of hydrogen bonding and is only observed in systems with a suitable local order. Hence, they are often not strong enough to control the local order. In contrast, hydrogen bonds predominantly influence the structural organization and packing. In comparison the size of the alkyl side chains is only of minor importance. The suppression of certain hydrogen bonds can lead to completely different structures and can induce a specific aggregation behavior. Thus, for the design of a supramolecular ordered system the presence of hydrogen bonding efficiently stabilizes the corresponding structure, but the ratio of hydrogen bond forming groups should be kept low to be able to influence the structure selectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of inorganic-organic hybrid polymers could successfully been prepared by the combination of different polymerization techniques. The access to a broad range of organic polymers incorporated into the hybrid polymer was realized using two independent approaches.rnIn the first approach a functional poly(silsesquioxane) (PSSQ) network was pre-formed, which was capable to initiate a controlled radical polymerization to graft organic vinyl-type monomers from the PSSQ precursor. As controlled radical polymerization techniques atom transfer radical polymerization (ATRP), as well as reversible addition fragmentation chain transfer (RAFT) polymerization could be used after defined tuning of the PSSQ precursor either toward a PSSQ macro-initiator or to a PSSQ macro-chain-transfer-agent. The polymerization pathway, consisting of polycondensation of trialkoxy-silanes followed by grafting-from polymerization of different monomers, allowed synthesis of various functional hybrid polymers. A controlled synthesis of the PSSQ precursors could successfully be performed using a microreactor setup; the molecular weight could be adjusted easily while the polydispersity index could be decreased well below 2.rnThe second approach aimed to incorporate differently derived organic polymers. As examples, polycarbonate and poly(ethylene glycol) were end-group-modified using trialkoxysilanes. After end-group-functionalization these organic polymers could be incorporated into a PSSQ network.rnThese different hybrid polymers showed extraordinary coating abilities. All polymers could be processed from solution by spin-coating or dip-coating. The high amount of reactive silanol moieties in the PSSQ part could be cross-linked after application by annealing at 130° for 1h. Not only cross-linking of the whole film was achieved, which resulted in mechanical interlocking with the substrate, also chemical bonds to metal or metal oxide surfaces were formed. All coating materials showed high stability and adhesion onto various underlying materials, reaching from metals (like steel or gold) and metal oxides (like glass) to plastics (like polycarbonate or polytetrafluoroethylene).rnAs the material and the synthetic pathway were very tolerant toward different functionalities, various functional monomers could be incorporated in the final coating material. The incorporation of N-isopropylacrylamide yielded in temperature-responsive surface coatings, whereas the incorporation of redox-active monomers allowed the preparation of semi-conductive coatings, capable to produce smooth hole-injection layers on transparent conductive electrodes used in optoelectronic devices.rnThe range of possible applications could be increased tremendously by incorporation of reactive monomers, capable to undergo fast and quantitative conversions by polymer-analogous reactions. For example, grafting active esters from a PSSQ precursor yielded a reactive surface coating after application onto numerous substrates. Just by dipping the coated substrate into a solution of a functionalized amine, the desired function could be immobilized at the interface as well as throughout the whole film. The obtained reactive surface coatings could be used as basis for different functional coatings for various applications. The conversion with specifically tuned amines yielded in surfaces with adjustable wetting behaviors, switchable wetting behaviors or as recognition element for surface-oriented bio-analytical devices. The combination of hybrid materials with orthogonal reactivities allowed for the first time the preparation of multi-reactive surfaces which could be functionalized sequentially with defined fractions of different groups at the interface. rnThe introduced concept to synthesis functional hybrid polymers unifies the main requirements on an ideal coating material. Strong adhesion on a wide range of underlying materials was achieved by secondary condensation of the PSSQ part, whereas the organic part allowed incorporation of various functionalities. Thus, a flexible platform to create functional and reactive surface coatings was achieved, which could be applied to different substrates. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the last few decades, the interest in functional nanomaterials is steadily increasing. Especially, in biomedicine the range of possible applications of multifunctional nanoparticles including dye-labeled makers and drug loaded carrier systems is extraordinary large. The incorporation of magnetic nanoparticles allows for an additional magnetic detection and manipulation. One promising system on the way to multifunctional nanomaterials is the polyorganosiloxane system. Via polycondensation of silan monomers in aqueous dispersion polyorganosiloxane nanoparticles with particle diameter between 10 and 150 nm can be synthesized. The versatile silane chemistry allows for the design of multifunctional network structures. In this work, hydrophilic iron oxide nanoparticles could be encapsulated into the polymeric particles in a highly efficient process whereat the superparamagnetic nature of the inorganic particles was restrained. The influence of different sized particles as well as the amount of the incorporated material was investigated. Using a core-shell architecture, controlled core and surface modifications could be achieved. An effective fluorescent labeling was performed via incorporation of dye-labeled monomers. Additionally, a hydrophilic surface modification was carried out via a grafting onto process of poly(ethylene glycol). Individual core and surface functionalization was achieved and the influence of the modification on the efficiency of the magnetic loading was tested. The applicability of the multifunctional particles in biological systems was proved via cellular uptake and toxicity testings. Furthermore, biofunctionalized particles were synthesized by EDC coupling using biotin and insulin.rnrn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer nanoparticles functionalized on the surface with photo-responsive labels were synthesized. In a first synthetic step, polystyrene was copolymerized with the cross-linker divinylbenzene and poly(ethylene glycol) acrylate in a miniemulsion, to produce nano-sized spheres (~ 60 nm radius) with terminal hydroxyl groups, which were functionalized in a subsequent synthetic step with photo-responsive labels. For this purpose, two photo-active molecular structures were separately used: anthracene, which is well known to form covalently bonded dimers upon photo-excitation; and pyrene, which only forms short lived excited state dimers (excimers). Acid derivatives of these labels (9-anthracene carboxylic acid and 1-pyrene butyric acid) were bonded to the hydroxyl terminal groups of the nanoparticles through an esterification reaction, via the intermediate formation of the corresponding acid chloride.rnThe obtained labeled nanoparticles appeared to be highly hydrophobic structures. They formed lyophobic suspensions in water, which after analysis by dynamic light scattering (DLS) and ultramicroscopic particle tracking, appeared to equilibrate as a collection of singly dispersed nanoparticles, together with a few nanoparticle aggregates. The relative amount of aggregates decreased with increasing amounts of the surfactant sodium dodecyl sulfate (SDS), thus confirming that aggregation is an equilibrated state resulting from lyophobicity. The formation of such aggregates was corroborated using scanning electron microscopy (SEM). The photo-irradiation of the lyophobic aqueous suspensions of anthracene labeled nanoparticles (An-NP) resulted in the formation of higher aggregates, as evidenced by DLS and ultramicroscopy. The obtained state of aggregation could be reverted by sonication. The possibility to re-aggregate the system in subsequent photo-excitation and sonication cycles was established. Likewise, the photo-irradiation of lyophobic aqueous suspensions of pyrene-labeled nanoparticles (Py-NP) resulted in the formation of higher aggregates, as evidenced by DLS and ultramicroscopy. These appeared to remain aggregated due to hydrophobic interactions. This system could also be re-dispersed by sonication and re-aggregated in subsequent cycles of photo-excitation and sonication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysiloxanes can be synthesized and subsequently modified (i) by the attachment of small molecules that change the properties of the silicone in such a way that it becomes more hydrophilic, but under the premise that this does not go together with a loss of the silicone-specific features. This can be done by adding hydrophilic sidechains to a polysiloxane. Polyethers like poly(ethylene glycol) or hyperbranched polyether-polyols are suitable in this regard. In order to assure that the silicone properties retain, these side groups can be attached to only one part of the polysiloxane backbone, which results in a block copolymer that consists of a common polysiloxane and a second block of the modified structure. (ii) Polysiloxanes can be equipped with functional groups that are capable of initializing polymerization of a different monomer (macroinitiator approach). For example, hydroxyl groups are used to initiate the ring opening polymerization of cyclic esters, or ATRP macroinitiators can be synthesized to add a second block via controlled radical polymerization. Stimuli responsive polymers like poly(oligoethylene glycol methacrylate) (POEGMA) can be added via this route to create “smart” siloxane-containing block copolymers that respond to certain stimuli. rnAn important premise for all synthetic routes is to achieve the targeted structure in a process as simple as possible, because facile availability of the material is crucial with regard to industrial applicability of the invented products. rnConcerning characterization of the synthesized macromolecules, emphasize is put on their (temperature dependent) aggregation behavior, which can be investigated by several microscopic and scattering methods, their behavior at the interface between silicone oils and water and their thermal properties.rnrn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschäftigt sich mit der Oberflächenfunktionalisierung von MnO Nanopartikeln (NP). Durch die Verwendung und Verbesserung verschiedener Polymere durch die Einbindung von Poly (Ethylen Glycol) (PEG), gelang es, die Löslichkeit dieser Nanopartikel in wässrigen Lösungen sowie in Körperflüssigkeiten zu erhöhen. Zusätzlich konnten diese Nanopartikel deutlich besser steril filtriert werden und zeigten eine erhöhte Aktivität alsrnKontrastmittel im MRT. Vorläufige Ergebnisse für die Verwendung von Silika als Schutzhülle für MnO NP werden ebenfalls kurz erläutert. Die verwendeten Polymere besaßen dabei zugängliche Aminogruppen, die eine weitere Funktionalisierung durch Bio-aktiver Gruppen ermöglichte. Der Nachweis einer erfolgreichen Bindung durch verschiedene Methoden wie SDS-PAGE, Western- und Northern Blot sowie die Verwendung unterschiedlicher FluoreszenzMessungen wird ebenfalls diskutiert. MnO NP und anderer magnetischer NP werden weiterhin auf ihr toxisches Verhalten gegenüber Caki1 und HeLa Zellen getestet. Dabei zeigte sich, dass MnO NP, im Gegensatz zu einigen Kupferoxiden, quasi nicht toxisch waren und das Proliferationsverhalten dieser Zellen quasi nicht beeinflussten. Weiterhin wurde ein Fluoreszenzfarbstoff, konkret Protoporphyrin IX, an die Oberfläche von MnO NP angebracht.Diese konnten dann erfolgreich als Kontrastmittel in der MRT verwendet werden und zeigten vielversprechende Ergebnisse für die Photodynamische Therapie. Desweiteren wird die Synthese des Antikörpers gegen p53 ausführlich erläutert. Dabei wurde genau darauf geachtet,dass dieser Antikörper dann an MnO NP gebunden werden kann.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chapter 1 of this thesis comprises a review of polyether polyamines, i.e., combinations of polyether scaffolds with polymers bearing multiple amino moieties. Focus is laid on controlled or living polymerization methods. Furthermore, fields in which the combination of cationic, complexing, and pH-sensitive properties of the polyamines and biocompatibility and water-solubility of polyethers promise enormous potential are presented. Applications include stimuli-responsive polymers with a lower critical solution temperature (LCST) and/or the ability to gel, preparation of shell cross-linked (SCL) micelles, gene transfection, and surface functionalization.rnIn Chapter 2, multiaminofunctional polyethers relying on the class of glycidyl amine comonomers for anionic ring-opening polymerization (AROP) are presented. In Chapter 2.1, N,N-diethyl glycidyl amine (DEGA) is introduced for copolymerization with ethylene oxide (EO). Copolymer microstructure is assessed using online 1H NMR kinetics, 13C NMR triad sequence analysis, and differential scanning calorimetry (DSC). The concurrent copolymerization of EO and DEGA is found to result in macromolecules with a gradient structure. The LCSTs of the resulting copolymers can be tailored by adjusting DEGA fraction or pH value of the environment. Quaternization of the amino moieties by methylation results in polyelectrolytes. Block copolymers are used for PEGylated gold nanoparticle formation. Chapter 2.2 deals with a glycidyl amine monomer with a removable protecting group at the amino moiety, for liberation of primary amines at the polyether backbone, which is N,N-diallyl glycidyl amine (DAGA). Its allyl groups are able to withstand the harsh basic conditions of AROP, but can be cleaved homogeneously after polymerization. Gradient as well as block copolymers poly(ethylene glycol)-PDAGA (PEG-PDAGA) are obtained. They are analyzed regarding their microstructure, LCST behavior, and cleavage of the protecting groups. rnChapter 3 describes applications of multi(amino)functional polyethers for functionalization of inorganic surfaces. In Chapter 3.1, they are combined with an acetal-protected catechol initiator, leading to well-defined PEG and heteromultifunctional PEG analogues. After deprotection, multifunctional PEG ligands capable of attaching to a variety of metal oxide surfaces are obtained. In a cooperative project with the Department of Inorganic and Analytical Chemistry, JGU Mainz, their potential is demonstrated on MnO nanoparticles, which are promising candidates as T1 contrast agents in magnetic resonance imaging. The MnO nanoparticles are solubilized in aqueous solution upon ligand exchange. In Chapter 3.2, a concept for passivation and functionalization of glass surfaces towards gold nanorods is developed. Quaternized mPEG-b-PqDEGA diblock copolymers are attached to negatively charged glass surfaces via the cationic PqDEGA blocks. The PEG blocks are able to suppress gold nanorod adsorption on the glass in the flow cell, analyzed by dark field microscopy.rnChapter 4 highlights a straightforward approach to poly(ethylene glycol) macrocycles. Starting from commercially available bishydroxy-PEG, cyclic polymers are available by perallylation and ring-closing metathesis in presence of Grubbs’ catalyst. Purification of cyclic PEG is carried out using α-cyclodextrin. This cyclic sugar derivative forms inclusion complexes with remaining unreacted linear PEG in aqueous solution. Simple filtration leads to pure macrocycles, as evidenced by SEC and MALDI-ToF mass spectrometry. Cyclic polymers from biocompatible precursors are interesting materials regarding their increased blood circulation time compared to their linear counterparts.rnIn the Appendix, A.1, a study of the temperature-dependent water-solubility of polyether copolymers is presented. Macroscopic cloud points, determined by turbidimetry, are compared with microscopic aggregation phenomena, monitored by continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in presence of the amphiphilic spin probe and model drug (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). These thermoresponsive polymers are promising candidates for molecular transport applications. The same techniques are applied in Chapter A.2 to explore the pH-dependence of the cloud points of PEG-PDEGA copolymers in further detail. It is shown that the introduction of amino moieties at the PEG backbone allows for precise manipulation of complex phase transition modes. In Chapter A.3, multi-hydroxyfunctional polysilanes are presented. They are obtained via copolymerization of the acetal-protected dichloro(isopropylidene glyceryl propyl ether)methylsilane monomer. The hydroxyl groups are liberated through acidic work-up, yielding versatile access to new multifunctional polysilanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different concepts for the synthesis of sulfur-containing polymers as well as their adsorption onto gold surfaces were studied. The present work is divided into three parts. The main part focuses on the synthesis of poly(1,2-alkylene sulfides) (“polysulfides”) with complex architectures on the basis of polyether-based macroinitiators by the anionic ring-opening polymerization of ethylene sulfide and propylene sulfide. This synthetic tool kit allowed the synthesis of star-shaped, brush-like, comb-like and pom-pom-like polysulfides, the latter two with an additional poly(ethylene glycol) chain. Additionally, the number of polysulfide arms as well as the monomer composition could be varied over a wide range to obtain copolymers with multiple thioether functionalities.rnThe second section deals with the synthesis of a novel lipoic acid-based initiator for ring-opening polymerizations for lactones and epoxides. A straightforward approach was selected to accomplish the ability to obtain tailored polymers with a common used disulfide-anchoring group, without the drawbacks of post-polymerization functionalization. rnIn the third part, a new class of block-copolymers consisting of polysulfides and polyesters were investigated. For the first time this approach enabled the use of hydroxyl-terminated poly(propylene sulfide) as macroinitiator for the synthesis of a second block.rnThe adsorption efficiency of those different polymer classes onto gold nanoparticles as well as gold rnsupports was studied via different methods.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In der vorliegenden Arbeit erfolgten Oberflächenmodifizierungen durch Polymere nach zwei Ansätzen. Dies war zum einen ein Ansatz, bei dem die Oberflächen mit Diblockcopolymeren versehen wurden. Diese bestanden aus einem Ankerblock, der starke Wechselwirkungen mit der Oberfläche zeigt, und einem Bojenblock, der gezielte Eigenschaften trägt. Zum anderen erfolgten Modifizierungen durch auf Plasmaschichten verankerte Homopolymere. Beide Ansätze erfolgten auf zwei Substraten von unterschiedlichen Eigenschaften. Diese waren das Siliciumoxid, für das Modifizierungen durch radikalische in-situ Oberflächenpolymerisation, und das Poly(ethylen-stat-norbornen), für das Modifizierungen durch ex-situ dargestellte Polymere gewählt wurden. Beim ersten Ansatz zur Modifizierung der Siliciumoxidoberfläche ermöglichte ein adsorbierter Poly(e-caprolacton)-Makroinitiator die Oberflächenpolymerisation hin zu oberflächenverankertem Poly(e-caprolacton)-block-poly(alkyl(meth)acrylat). Beim zweiten Ansatz erfolgte die Abscheidung von plasmapolymerisiertem Allylamin, die Immobilisierung des Azoinitiators 4,4’-Azobis(4-cyanopentansäurechlorid) und die nachfolgende Oberflächenpolymerisation von Methylmethacrylat oder Styrol. Beim ersten Modifizierungsansatz der Poly(ethylen-stat-norbornen)-Oberfläche sollte diese mit thermisch interdiffundierten Poly(ethylen-alt-propylen)-block-poly(dimethylsiloxan) versehen werden. Trotz erfolgreicher Synthese wurde gezeigt, daß keine Interdiffusion stattfand. Im zweiten Modifizierungsansatz wurde die Oberfläche mit aus einem Hexamethyldisiloxan/Sauerstoff-Plasma abgeschiedenem reinem Siliciumoxid beschichtet, woran sich die Adsorption von Poly(dimethylsiloxan) anschloß. Damit konnten die hohen Haftreibungskräfte gegenüber Halogenbutylgummi erfolgreich beseitigt werden.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, three nitroxide based ionic systems were used to investigate structure and dynamics of their respective solutions in mixed solvents by means of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy at X- and W-band (9.5 and 94.5 GHz, respectively). rnFirst, the solvation of the inorganic radical Fremy’s salt (K2ON(SO3)2) in isotope substituted binary solvent mixtures (methanol/water) was investigated by means of high-field (W-band) pulse ENDOR spectroscopy and molecular dynamics (MD) simulations. From the analysis of orientation-selective 1H and 2H ENDOR spectra the principal components of the hyperfine coupling (hfc) tensor for chemically different protons (alcoholic methyl vs. exchangeable protons) were obtained. The methyl protons of the organic solvent approach with a mean distance of 3.5 Å perpendicular to the approximate plane spanned by ON(S)2 of the probe molecule. Exchangeable protons were found to be distributed isotropically, approaching closest to Fremy’s salt from the hydrogen-bonded network around the sulfonate groups. The distribution of exchangeable and methyl protons as found in MD simulations is in full agreement with the ENDOR results. The solvation was found to be similar for the studied solvent ratios between 1:2.3 and 2.3:1 and dominated by an interplay of H-bond (electrostatic) interactions and steric considerations with the NO group merely involved into H-bonds.rnFurther, the conformation of spin labeled poly(diallyldimethylammonium chloride) (PDADMAC) solutions in aqueous alcohol (methanol, ethanol, n-propanol, ethylene glycol, glycerol) mixtures in dependence of divalent sodium sulfate was investigated with double electron-electron resonance (DEER) spectroscopy. The DEER data was analyzed using the worm-like chain model which suggests that in organic-water solvent mixtures the polymer backbones are preferentially solvated by the organic solvent. We found a less serve impact on conformational changes due to salt than usually predicted in polyelectrolyte theory which stresses the importance of a delicate balance of hydrophobic and electrostatic interactions, in particular in the presence of organic solvents.rnFinally, the structure and dynamics of miniemulsions and polymerdispersions prepared with anionic surfactants, that were partially replaced by a spin labeled fatty acid in presence and absence of a lanthanide beta-diketonate complex was characterized by CW EPR spectroscopy. Such miniemulsions form multilayers with the surfactant head group bound to the lanthanide ion. Beta-diketonates were formerly used as NMR shift reagents and nowadays find application as luminescent materials in OLEDs and LCDs and as contrast agent in MRT. The embedding of the complex into a polymer matrix results in an easy processable material. It was found that the structure formation takes place in miniemulsion and is preserved during polymerization. For surfactants with carboxyl-head group a higher order of the alkyl chains and less lateral diffusion is found than for sulfat-head groups, suggesting a more uniform and stronger coordination to the metal ion. The stability of these bilayers depends on the temperature and the used surfactant which should be considered for the used polymerization temperature if a maximum output of the structured regions is wished.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In summary, thermoresponsive polyacrylamides with various amounts of different photoswitchable side groups, i. e. azobenzene, salicylideneaniline and fulgimide were successfully prepared. As such, in a first step three different chromophores with an amine functionality were synthesized. The synthesis of the stimuli-responsive materials was based on the RAFT polymerization of activated ester acrylates followed by a polymer analogous reaction with different amines. The procedure has been designed to allow the synthesis of well-defined materials with functional groups. All copolymers prepared in this way showed a LCST in aqueous solution. The LCST was in general decreased by increasing the amount of hydrophobic dye incorporated into the thermoresponsive polymer. However, in the case of the fulgimide, the LCST was hardly affected by the chromophore. For azobenzene containing PNIPAM polymers and analogues, higher LCST values were measured after irradiation of the polymer sample solutions with UV-light (Delta LCSTmax = 7.3°C). A reversible light-induced solubility change within a certain temperature range was possible. In contrast to this, irradiated samples of salicylideneaniline containing thermoresponsive copolymers showed an irreversible increase in the LCST (Delta LCSTmax = 13.0°C). Fulgimide chromophores did not influence the LCST of PNIPAM based copolymers after UV-light exposure.rnSimilar to the thermoresponsive polyacrylamides with azobenzene side groups, poly(oligo(ethylene glycol) methyl ether methacrylate) [P(OEGMA)] polymers with azobenzene end groups showed a LCST shift upon UV-irradiation. These polymers were synthesized by RAFT polymerization using a functional chain transfer agent (CTA). For this, PFP-CTA was used as a RAFT-agent for end group functionalization of (thermoresponsive) polymers. In contrast to the statistically arranged copolymers with azobenzene side groups, P(OEGMA) polymers with terminal azobenzene showed a linear increase of the LCST shifts with increasing amount of chromophore (Delta LCSTmax = 4.3°C). Noteworthy, the chemical nature of the end group exhibited a strong influence on the LCST in the case of short thermoresponsive P(OEGMA) polymers.rnThe investigation on temperature- and lightresponsive polymers was transferred onto block copolymers capable to self-assemble into polymeric micelles. Therefore, PEO-b-PNIPAM block copolymers with azobenzene moieties were synthesized successfully. These polymers showed a “smart” behavior in aqueous solution, as the reversible formation and disruption of the micelles could either be controlled by temperature or using light as a stimulus. The usefulness of these materials was demonstrated by encapsulation of a hydrophobic dye in the core of the micelle. Such materials might have a great potential as a model system for several technical or biological applications.rnFinally, double thermoresponsive block copolymers forming micellar structures in a certain temperature range with functional end groups could successfully be synthesized. These “smart materials” based on POEGMA-b-PNIPMAM have been demonstrated to be very promising for a temperature selective immobilization on a protein surface. This might be a suitable concept for further biological applications.rnConcluding, different thermoresponsive copolymers and block copolymers with lightresponsive moieties arranged along the backbone or located at the chain ends were successfully prepared and investigated. By controlling the nature of functional groups and their respective incorporation ratios, the LCST could be dialed in precisely. Further, the LCST of the polymers could be triggered by light. A light-controlled disruption of micellar structures could be shown for functional block copolymers. The importance of end groups of thermoresponsive polymers was demonstrated by a temperature-controlled protein-polymer binding of a terminal biotin-functionalized double thermoresponsive polymer. The synthetic approaches and the material properties presented here should be promising for further research and applications beyond this dissertation.rn