11 resultados para Periodic nanostructures

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents algorithms for the calculation of the electrostatic interaction in partially periodic systems. The framework for these algorithms is provided by the simulation package ESPResSo, of which the author was one of the main developers. The prominent features of the program are listed and the internal structure is described. In the following, algorithms for the calculation of the Coulomb sum in three dimensionally periodic systems are described. These methods are the foundations for the algorithms for partially periodic systems presented in this work. Starting from the MMM2D method for systems with one non-periodic coordinate, the ELC method for these systems is developed. This method consists of a correction term which allows to use methods for three dimensional periodicity also for the case of two periodic coordinates. The computation time of this correction term is neglible for large numbers of particles. The performance of MMM2D and ELC are demonstrated by results from the implementations contained in ESPResSo. It is also discussed, how different dielectric constants inside and outside of the simulation box can be realized. For systems with one periodic coordinate, the MMM1D method is derived from the MMM2D method. This method is applied to the problem of the attraction of like-charged rods in the presence of counterions, and results of the strong coupling theory for the equilibrium distance of the rods at infinite counterion-coupling are checked against results from computer simulations. The degree of agreement between the simulations at finite coupling and the theory can be characterized by a single parameter gamma_RB. In the special case of T=0, one finds under certain circumstances flat configurations, in which all charges are located in the rod-rod plane. The energetically optimal configuration and its stability are determined analytically, which depends on only one parameter gamma_z, similar to gamma_RB. These findings are in good agreement with results from computer simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diskotische Hexa-peri-hexabenzocoronene (HBC) als molekulare, definierte graphitische Substrukturen sind bereits seit langem Gegenstand von Untersuchungen zu der Delokalisierung von π-Elektronen. In dieser Arbeit wurden zusätzlich Platin-Komplexe in das periphere Substitutionsmuster von HBC eingeführt. Dies führte zu einer Verbesserung der Emission von dem angeregten Triplett-Zustand in den Singulett-Grundzustand mit einer zusätzlichen Verlängerung der Lebensdauer des angeregten Zustandes. Zusätzlich erlaubte diese Konfiguration ein schnelles Intersystem-Crossing mittels einer verstärkten Spin-Orbit Kopplung, die sowohl bei tiefen Temperaturen, als auch bei Raumtemperatur exklusiv zu Phosphoreszenz (T1→S0) führte. Das Verständniss über solche Prozesse ist auch essentiell für die Entwicklung verbesserter opto-elektronischer Bauteile. Die Erstellung von exakt definierten molekularen Strukturen, die speziell für spezifische Interaktionen hergestellt wurden, machten eine Inkorporation von hydrophoben-hydrophilen, wasserstoffverbrückten oder elektrostatischen funktionalisierten Einheiten notwendig, um damit den supramolekularen Aufbau zu kontrollieren. Mit Imidazolium-Salzen funktionalisierte HBC Derivate wurden zu diesem Zwecke hergestellt. Eine interessante Eigenschaft dieser Moleküle ist ihre Amphiphilie. Dies gestattete die Untersuchung ihrer Eigenschaften in einem polaren Solvens und sowohl der Prozessierbarkeit als auch der Faserbildung auf Siliziumoxid-Trägern. Abhängig vom Lösungsmittel und der gewählten Konditionen konnten hochkristalline Fasern erhalten werden. Durch eine Substitution der HBCs mit langen, sterisch anspruchsvollen Seitenketten, konnte durch eine geeignete Prozessierung eine homöotrope Ausrichtung auf Substraten erreicht werden, was dieses Material interessant für photovoltaische Applikationen macht. Neuartige Polyphenylen-Metall-Komplexe mit diskotischen, linearen und dendritischen Geometrien wurden mittels einer einfachen Reaktion zwischen Co2(CO)8 und Ethinyl-Funktionalitäten in Dichlormethan hergestellt. Nach der Pyrolyse dieser Komplexe ergaben sich unterschiedliche Kohlenstoff-Nanopartikel, inklusive Nanoröhren, graphitischen Nanostäben und Kohlenstoff/Metall Hybrid Komplexe, die durch Elektronenmikroskopie untersucht wurden. Die resultierenden Strukturen waren dabei abhängig von der Zusammensetzung und Struktur der Ausgangssubstanzen. Anhand dieser Resultate ergeben sich diverse Möglichkeiten, um den Mechanismus, der zur Herstellung graphitischer Nanopartikel führt, besser zu verstehen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, the formation and migration of point defects induced by electron irradiation in carbon nanostructures, including carbon onions, nanotubes and graphene layers, were investigated by in-situ TEM. The mobility of carbon atoms normal to the layers in graphitic nanoparticles, the mobility of carbon interstitials inside SWCNTs, and the migration of foreign atoms in graphene layers or in layers of carbon nanotubes were studied. The diffusion of carbon atoms in carbon onions was investigated by annealing carbon onions and observing the relaxation of the compressed clusters in the temperature range of 1200 – 2000oC. An activation energy of 5.0±0.3 eV was obtained. This rather high activation energy for atom exchange between the layers not only prevents the exchange of carbon atoms between the layers at lower temperature but also explains the high morphological and mechanical stability of graphite nanostructures. The migration of carbon atoms in SWCNTs was investigated quantitatively by cutting SWCNT bundles repeatedly with a focused electron beam at different temperatures. A migration barrier of about 0.25 eV was obtained for the diffusion of carbon atoms inside SWCNTs. This is an experimental confirmation of the high mobility of interstitial atoms inside carbon nanotubes, which corroborates previously developed theoretical models of interstitial diffusivity. Individual Au and Pt atoms in one- or two-layered graphene planes and MWCNTs were monitored in real time at high temperatures by high-resolution TEM. The direct observation of the behavior of Au and Pt atoms in graphenic structures in a temperature range of 600 – 700°C allows us to determine the sites occupied by the metal atoms in the graphene layer and the diffusivities of the metal atoms. It was found that metal atoms were located in single or multiple carbon vacancies, not in off-plane positions, and diffused by site exchange with carbon atoms. Metal atoms showed a tendency to form clusters those were stable for a few seconds. An activation energy of around 2.5 eV was obtained for the in-plane migration of both Au and Pt atoms in graphene (two-dimensional diffusion). The rather high activation energy indicates covalent bonding between metal and carbon atoms. Metal atoms were also observed to diffuse along the open edge of graphene layers (one-dimensional diffusion) with a slightly lower activation energy of about 2.3 eV. It is also found that the diffusion of metal atoms in curved graphenic layers of MWCNTs is slightly faster than in planar graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials that can mold the flow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (<1 µm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons.rnThe experimental part of this work is divided into three chapters: Chapter 4 is concerned with the localized mechanical waves in the individual spherical colloidal particles, i.e., with their resonance- or eigenvibrations. The investigation of these vibrations with regard to the environment of the particles, their chemical composition, and the influence of temperature on nanoscopically structured colloids allows novel insights into the physical properties of colloids at small length scales. Furthermore, some general questions concerning light scattering on such systems, in dispute so far, are convincingly addressed.rnChapter 5 is a study of the traveling of mechanical waves in colloidal systems, consisting of ordered and disordered colloids in liquid or elastic matrix. Such systems show acoustic band gaps, which can be explained geometrically (Bragg gap) or by the interaction of the acoustic band with the eigenvibrations of the individual spheres (hybridization gap).rnWhile the latter has no analogue in photonics, the presence of strong phonon scatterers, when a large elastic mismatch between the composite components exists, can largely impact phonon propagation in analogy to strong multiple light scattering systems. The former is exemplified in silica based phononic structures that opens the door to new ways of sound propagation manipulation.rnChapter 6 describes the first measurement of the elastic moduli in newly fabricated by physical vapor deposition so-called ‘stable organic glasses’. rnIn brief, this thesis explores novel phenomena in colloid-based hypersonic phononic structures, utilizing a versatile microfabrication technique along with different colloid architectures provided by material science, and applying a non-destructive optical experimental tool to record dispersion diagrams.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work self-assembling model systems in aqueous solution were studied. The systems contained charged polymers, polyelectrolytes, that were combined with oppositely charged counterions to build up supramolecular structures. With imaging, scattering and spectroscopic techniques it was investigated how the structure of building units influences the structure of their assemblies. Polyelectrolytes with different chemical structure, molecular weight and morphology were investigated. In addition to linear polyelectrolytes, semi-flexible cylindrical bottle-brush polymers that possess a defined cross-section and a relatively high persistence along the backbone were studied. The polyelectrolytes were combined with structural organic counterions having charge numbers one to four. Especially the self-assembly of polyelectrolytes with different tetravalent water-soluble porphyrins was studied. Porphyrins have a rigid aromatic structure that has a structural effect on their self-assembly behavior and through which porphyrins are capable of self-aggregation via π-π interaction. The main focus of the thesis is the self-assembly of cylindrical bottle-brush polyelectrolytes with tetravalent porphyrins. It was shown that the addition of porphyrins to oppositely charged brush molecules induces a hierarchical formation of stable nanoscale brush-porphyrin networks. The networks can be disconnected by addition of salt and single porphyrin-decoratedrncylindrical brush polymers are obtained. These two new morphologies, brush-porphyrin networks and porphyrin-decorated brush polymers, may have potential as functional materials with interesting mechanical and optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled molecular structures were investigated on insulating substrate surfaces using non-contact atomic force microscopy. Both, substrate preparation and molecule deposition, took place under ultra-high vacuum conditions. First, C60 molecules were investigated on the TiO2 (110) surface. This surface exhibits parallel running troughs at the nanometer scale, which strongly steer the assembly of the molecules. This is in contrast to the second investigated surface. The CaF2 (111) surface is atomically flat and the molecular assemblyrnwas observed to be far less affected by the surface. Basically different island structures were observed to what is typically know. Based on extensive experimental studies and theoretical considerations, a comprehensive picture of the processes responsible for the island formation of C60 molecules on this insulating surfaces was developed. The key process for the emergence of the observed novel island structures was made out to be the dewetting of molecules from the substrate. This new knowledge allows to further understand andrnexploit self-assembly techniques in structure fabrication on insulating substrate surfaces. To alter island formation and island structure, C60 molecules were codeposited with second molecule species (PTCDI and SubPc) on the CaF2 (111) surface. Depending on the order of deposition, quiet different structures were observed to arise. Thus, these are the first steps towards more complex functional arrangements consisting of two molecule species on insulating surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit wird eine detaillierte Untersuchung und Charakterisierung der Zwei-Photonen-induzierten Fluoreszenzverstärkung von organischen Farbstoffen auf plasmonischen Nanostrukturen vorgestellt. Diese Fluoreszenzverstärkung ist insbesondere für hochaufgelöste Fluoreszenzmikroskopie und Einzelmolekülspektroskopie von großer Bedeutung. Durch die Zwei-Photonen-Anregung resultiert eine Begrenzung des Absorptionsprozesses auf das fokale Volumen. In Kombination mit dem elektrischen Nahfeld der Nanostrukturen als Anregungsquelle entsteht eine noch stärkere Verringerung des Anregungsvolumens auf eine Größe unterhalb der Beugungsgrenze. Dies erlaubt die selektive Messung ausgewählter Farbstoffe. Durch die Herstellung der Nanopartikel mittels Kolloidlithografie wird eine definierte, reproduzierbare Geometrie erhalten. Polymermultischichten dienen als Abstandshalter, um die Farbstoffe an einer exakten Distanz zum Metall zu positionieren. Durch die kovalente Anbindung des Farbstoffs an die oberste Schicht wird eine gleichmäßige Verteilung des Farbstoffs in geringer Konzentration erhalten. rnEs wird eine Verstärkung der Fluoreszenz um den Faktor 30 für Farbstoffe auf Goldellipsen detektiert, verglichen mit Farbstoffen außerhalb des Nahfelds. Sichelförmige Nanostrukturen erzeugen eine Verstärkung von 120. Dies belegt, dass das Ausmaß der Fluoreszenzverstärkung entscheidend von der Stärke des elektrischen Nahfelds der Nanostruktur abhängt. Auch das Material der Nanostruktur ist hierbei von Bedeutung. So erzeugen Silberellipsen eine 1,5-fach höhere Fluoreszenzverstärkung als identische Goldellipsen. Distanzabhängige Fluoreszenzmessungen zeigen, dass die Zwei-Photonen-angeregte Fluoreszenzverstärkung an strukturspezifischen Abständen zum Metall maximiert wird. Elliptische Strukturen zeigen ein Maximum bei einem Abstand von 8 nm zum Metall, wohingegen bei sichelförmigen Nanostrukturen die höchste Fluoreszenzintensität bei 12 nm gemessen wird. Bei kleineren Abständen unterliegt der Farbstoff einem starken Löschprozess, sogenanntes Quenching. Dieses konkurriert mit dem Verstärkungsprozess, wodurch es zu einer geringen Nettoverstärkung kommt. Hat die untersuchte Struktur Dimensionen größer als das Auflösungsvermögen des Mikroskops, ist eine direkte Visualisierung des elektrischen Nahfelds der Nanostruktur möglich. rnrnEin weiterer Fokus dieser Arbeit lag auf der Herstellung neuartiger Nanostrukturen durch kolloidlithografische Methoden. Gestapelte Dimere sichelförmiger Nanostrukturen mit exakter vertikaler Ausrichtung und einem Separationsabstand von etwa 10 nm wurden hergestellt. Die räumliche Nähe der beiden Strukturen führt zu einem Kopplungsprozess, der neue optische Resonanzen hervorruft. Diese können als Superpositionen der Plasmonenmoden der einzelnen Sicheln beschrieben werden. Ein Hybridisierungsmodell wird angewandt, um die spektralen Unterschiede zu erklären. Computersimulationen belegen die zugrunde liegende Theorie und erweitern das Modell um experimentell nicht aufgelöste Resonanzen. rnWeiterhin wird ein neuer Herstellungsprozess für sichelförmige Nanostrukturen vorgestellt, der eine präzise Formanpassung ermöglicht. Hierdurch kann die Lage der Plasmonenresonanz exakt justiert werden. Korrelationen der geometrischen Daten mit den Resonanzwellenlängen tragen zum grundlegenden Verständnis der Plasmonenresonanzen bei. Die vorgestellten Resultate wurden mittels Computersimulationen verifiziert. Der Fabrikationsprozess erlaubt die Herstellung von Dimeren sichelförmiger Nanostrukturen in einer Ebene. Durch die räumliche Nähe überlappen die elektrischen Nahfelder, wodurch es zu kopplungs-induzierten Shifts der Plasmonenresonanzen kommt. Der Unterschied zu theoretisch berechneten ungekoppelten Nanosicheln kann auch bei den gegenüberliegenden sichelförmigen Nanostrukturen mit Hilfe des Plasmonenhybridisierungsmodells erklärt werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmonic nanoparticles are great candidates for sensing applications with optical read-out. Plasmon sensing is based on the interaction of the nanoparticle with electromagnetic waves where the particle scatters light at its resonance wavelength. This wavelength depends on several intrinsic factors like material, shape and size of the nanoparticle as well as extrinsic factors like the refractive index of the surrounding medium. The latter allows the nanoparticle to be used as a sensor; changes in the proximate environment can be directly monitored by the wavelength of the emitted light. Due to their minuscule size and high sensitivity this allows individual nanoparticles to report on changes in particle coverage.rnrnTo use this single particle plasmon sensor for future sensing applications it has to meet the demand for detection of incidents on the single molecule level, such as single molecule sensing or even the detection of conformational changes of a single molecule. Therefore, time resolution and sensitivity have to be enhanced as today’s measurement methods for signal read-out are too slow and not sensitive enough to resolve these processes. This thesis presents a new experimental setup, the 'Plasmon Fluctuation Setup', that leads to tremendous improvements in time resolution and sensitivity. This is achieved by implementation of a stronger light source and a more sensitive detector. The new setup has a time resolution in the microsecond regime, an advancement of 4-6 orders of magnitude to previous setups. Its resonance wavelength stability of 0.03 nm, measured with an exposure time of 10 ms, is an improvement of a factor of 20 even though the exposure time is 3000 times shorter than in previous reports. Thus, previously unresolvable wavelength changes of the plasmon sensor induced by minor local environmental alteration can be monitored with extremely high temporal resolution.rnrnUsing the 'Plasmon Fluctuation Setup', I can resolve adsorption events of single unlabeled proteins on an individual nanorod. Additionally, I monitored the dynamic evolution of a single protein binding event on a millisecond time scale. This feasibility is of high interest as the role of certain domains in the protein can be probed by a study of modified analytes without the need for labels possibly introducing conformational or characteristic changes to the target. The technique also resolves equilibrium fluctuations in the coverage, opening a window into observing Brownian dynamics of unlabeled macromolecules. rnrnA further topic addressed in this thesis is the usability of the nanoruler, two nanospheres connected with a spacer molecule, as a stiffness sensor for the interparticle linker under strong illumination. Here, I discover a light induced collapse of the nanoruler. Furthermore, I exploit the sensing volume of a fixed nanorod to study unlabeled analytes diffusing around the nanorod at concentrations that are too high for fluorescence correlation spectroscopy but realistic for biological systems. Additionally, local pH sensing with nanoparticles is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Für viele Anwendungen von Nanomaterialien sind maßgeschneiderte Produkte wün-schenswert, weswegen ein tiefgreifendes und genaues Wissen der Reaktionsabläufe, die zu diesen Produkten führen, unabdingbar ist. Um dies im Fall von SnO2 zu erreichen, behandelt diese Arbeit die kontrollierte Synthese und genaue Charakterisierung von Nanopartikeln von Zinn(IV) Oxid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Synthese von nanostrukturierten Antimoniden, wobei die folgenden beiden Themen bearbeitet wurden: rnAus chemischer Sicht wurden neue Synthesewege entwickelt, um Nanopartikel der Verbindungen in den binären Systemen Zn-Sb und Fe-Sb herzustellen (Zn4Sb3, ZnSb, FeSb2, Fe1+xSb). Anders als in konventionellen Festkörperreaktionen, die auf die Synthese von Bulk-Materialien oder Einkristallen zielen, muss die Synthese von Nanopartikeln Agglomerate und Ostwald-Wachstum vermeiden. Daher benötigen annehmbare Reaktionszeiten und vergleichsweise tiefe Reaktionstemperaturen kurze Diffusionswege und tiefe Aktivierungsbarrieren. Demzufolge bedient sich die Synthese der Reaktion von Antimon-Nanopartikeln und geeigneten molekularen oder nanopartikulären Edukten der entsprechenden Übergangsmetalle. Zusätzlich wurden anisotrope ZnSb Strukturen synthetisiert, indem eine Templat-Synthese mit Hilfe von anodisierten Aluminiumoxid- oder Polycarbonat-Membranen angewandt wurde. rnDie erhaltenen Produkte wurden hauptsächlich durch Röntgen-Diffraktion und Elektronenmikroskopie untersucht. Die Auswertung der Pulver Röntgendiffraktions-Daten stellte eine Herausforderung dar, da die Nanostrukturierung und die Anwesenheit von mehreren Phasen zu verbreiterten und überlagernden Reflexen führen. Zusätzliche Fe-Mößbauer Messungen wurden im Falle der Fe-Sb Produkte vorgenommen, um detailliertere Informationen über die genaue Zusammensetzung zu erhalten. Die erstmals hergestellte Phase Zn1+xSb wurde einer detaillierten Kristallstrukturanalyse unterzogen, die mit Hilfe einer neuen Diffraktionsmethode, der automatisierten Elektronen Diffraktions Tomographie, durchgeführt wurde.rnrnAus physikalischer Sicht sind Zn4Sb3, ZnSb und FeSb2 interessante thermoelektrische Materialien, die aufgrund ihrer Fähigkeit thermische in elektrische Energie umzuwandeln, großes Interesse geweckt haben. Nanostrukturierte thermoelektrische Materialien zeigen dabei eine höhere Umwandlungseffizienz zu erhöhen, da deren thermische Leitfähigkeit herabgesetzt ist. Da thermoelektrische Bauteile aus dichten Bulk-Materialien gefertigt werden, spielte die Verfestigung der synthetisierten nanopartikulären Pulver eine große Rolle. Die als „Spark Plasma Sintering“ bezeichnete Methode wurde eingesetzt, um die Proben zu pressen. Dies ermöglicht schnelles Heizen und Abkühlen der Probe und kann so das bei klassischen Heißpress-Methoden unvermeidliche Kristallitwachstum verringern. Die optimalen Bedingungen für das Spark Plasma Sintern zu finden, ist Inhalt von bestehender und weiterführender Forschung. rnEin Problem stellt die Stabilität der Proben während des Sinterns dar. Trotz des schnellen Pressens wurde eine teilweise Zersetzung im Falle des Zn1+xSb beobachtet, wie mit Hilfe von Synchrotrondiffraktionsuntersuchungen aufgedeckt wurde. Morphologie und Dichte der verschiedenen verfestigten Materialien wurden mittels Rasterelektronenmikroskopie und Lasermikroskopie bestimmt. Die Gitterdynamik wurde mit Hilfe von Wärmekapazitätsmessungen- und inelastischer Kern-Streuung untersucht. Die Wärmeleitfähigkeit der nanostrukturierten Materialien ist im Vergleich zu den Festkörpern ist drastisch reduziert - im Falle des FeSb2 um mehr als zwei Größenordnungen. Abhängig von der Zusammensetzung und mechanischen Härte wurden für einen Teil der verfestigten Nanomaterialien die thermoelektrische Eigenschaften, wie Seebeck Koeffizient, elektrische und Wärmeleitfähigkeit, gemessen.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let k := bar{F}_p for p > 2, W_n(k) := W(k)/p^n and X_n be a projective smooth W_n(k)-scheme which is W_{n+1}(k)-liftable. For all n > 1, we construct explicitly a functor, which we call the inverse Cartier functor, from a subcategory of Higgs bundles over X_n to a subcategory of flat Bundles over X_n. Then we introduce the notion of periodic Higgs-de Rham flows and show that a periodic Higgs-de Rham flow is equivalent to a Fontaine-Faltings module. Together with a p-adic analogue of Riemann-Hilbert correspondence established by Faltings, we obtain a coarse p-adic Simpson correspondence.