6 resultados para Noncommutative spacetime
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In den letzten fünf Jahren hat sich mit dem Begriff desspektralen Tripels eine Möglichkeit zur Beschreibungdes an Spinoren gekoppelten Gravitationsfeldes auf(euklidischen) nichtkommutativen Räumen etabliert. Die Dynamik dieses Gravitationsfeldes ist dabei durch diesogenannte spektrale Wirkung, dieSpur einer geeigneten Funktion des Dirac-Operators,bestimmt. Erstaunlicherweise kann man die vollständige Lagrange-Dichtedes (an das Gravitationsfeld gekoppelten) Standardmodellsder Elementarteilchenphysik, also insbesondere auch denmassegebenden Higgs-Sektor, als spektrale Wirkungeines entsprechenden spektralen Tripels ableiten. Diesesspektrale Tripel ist als Produkt des spektralenTripels der (kommutativen) Raumzeit mit einem speziellendiskreten spektralen Tripel gegeben. In der Arbeitwerden solche diskreten spektralen Tripel, die bis vorKurzem neben dem nichtkommutativen Torus die einzigen,bekannten nichtkommutativen Beispiele waren, klassifiziert. Damit kannnun auch untersucht werden, inwiefern sich dasStandardmodell durch diese Eigenschaft gegenüber anderenYang-Mills-Higgs-Theorien auszeichnet. Es zeigt sichallerdings, dasses - trotz mancher Einschränkung - eine sehr große Zahl vonModellen gibt, die mit Hilfe von spektralen Tripelnabgeleitet werden können. Es wäre aber auch denkbar, dass sich das spektrale Tripeldes Standardmodells durch zusätzliche Strukturen,zum Beispiel durch eine darauf ``isometrisch'' wirkendeHopf-Algebra, auszeichnet. In der Arbeit werden, um dieseFrage untersuchen zu können, sogenannte H-symmetrischespektrale Tripel, welche solche Hopf-Isometrien aufweisen,definiert.Dabei ergibt sich auch eine Möglichkeit, neue(H-symmetrische) spektrale Tripel mit Hilfe ihrerzusätzlichen Symmetrienzu konstruieren. Dieser Algorithmus wird an den Beispielender kommutativen Sphäre, deren Spin-Geometrie hier zumersten Mal vollständig in der globalen, algebraischen Sprache der NichtkommutativenGeometrie beschrieben wird, sowie dem nichtkommutativenTorus illustriert.Als Anwendung werden einige neue Beipiele konstruiert. Eswird gezeigt, dass sich für Yang-Mills Higgs-Theorien, diemit Hilfe von H-symmetrischen spektralen Tripeln abgeleitetwerden, aus den zusätzlichen Isometrien Einschränkungen andiefermionischen Massenmatrizen ergeben. Im letzten Abschnitt der Arbeit wird kurz auf dieQuantisierung der spektralen Wirkung für diskrete spektraleTripel eingegangen.Außerdem wird mit dem Begriff des spektralen Quadrupels einKonzept für die nichtkommutative Verallgemeinerungvon lorentzschen Spin-Mannigfaltigkeiten vorgestellt.
Resumo:
Über viele Jahre hinweg wurden wieder und wieder Argumente angeführt, die diskreten Räumen gegenüber kontinuierlichen Räumen eine fundamentalere Rolle zusprechen. Unser Zugangzur diskreten Welt wird durch neuere Überlegungen der Nichtkommutativen Geometrie (NKG) bestimmt. Seit ca. 15Jahren gibt es Anstrengungen und auch Fortschritte, Physikmit Hilfe von Nichtkommutativer Geometrie besser zuverstehen. Nur eine von vielen Möglichkeiten ist dieReformulierung des Standardmodells derElementarteilchenphysik. Unter anderem gelingt es, auch denHiggs-Mechanismus geometrisch zu beschreiben. Das Higgs-Feld wird in der NKG in Form eines Zusammenhangs auf einer zweielementigen Menge beschrieben. In der Arbeit werden verschiedene Ziele erreicht:Quantisierung einer nulldimensionalen ,,Raum-Zeit'', konsistente Diskretisierungf'ur Modelle im nichtkommutativen Rahmen.Yang-Mills-Theorien auf einem Punkt mit deformiertemHiggs-Potenzial. Erweiterung auf eine ,,echte''Zwei-Punkte-Raum-Zeit, Abzählen von Feynman-Graphen in einer nulldimensionalen Theorie, Feynman-Regeln. Eine besondere Rolle werden Termini, die in derQuantenfeldtheorie ihren Ursprung haben, gewidmet. In diesemRahmen werden Begriffe frei von Komplikationen diskutiert,die durch etwaige Divergenzen oder Schwierigkeitentechnischer Natur verursacht werden könnten.Eichfixierungen, Geistbeiträge, Slavnov-Taylor-Identität undRenormierung. Iteratives Lösungsverfahren derDyson-Schwinger-Gleichung mit Computeralgebra-Unterstützung,die Renormierungsprozedur berücksichtigt.
Resumo:
Das Standardmodell der Elementarteilchenphysik istexperimentell hervorragend bestätigt, hat auf theoretischerSeite jedoch unbefriedigende Aspekte: Zum einen wird derHiggssektor der Theorie von Hand eingefügt, und zum anderenunterscheiden sich die Beschreibung des beobachtetenTeilchenspektrums und der Gravitationfundamental. Diese beiden Nachteile verschwinden, wenn mandas Standardmodell in der Sprache der NichtkommutativenGeometrie formuliert. Ziel hierbei ist es, die Raumzeit der physikalischen Theoriedurch algebraische Daten zu erfassen. Beispielsweise stecktdie volle Information über eine RiemannscheSpinmannigfaltigkeit M in dem Datensatz (A,H,D), den manspektrales Tripel nennt. A ist hierbei die kommutativeAlgebra der differenzierbaren Funktionen auf M, H ist derHilbertraum der quadratintegrablen Spinoren über M und D istder Diracoperator. Mit Hilfe eines solchen Tripels (zu einer nichtkommutativenAlgebra) lassen sich nun sowohl Gravitation als auch dasStandardmodell mit mathematisch ein und demselben Mittelerfassen. In der vorliegenden Arbeit werden nulldimensionale spektraleTripel (die diskreten Raumzeiten entsprechen) zunächstklassifiziert und in Beispielen wird eine Quantisierungsolcher Objekte durchgeführt. Ein Problem der spektralenTripel stellt ihre Beschränkung auf echt RiemannscheMetriken dar. Zu diesem Problem werden Lösungsansätzepräsentiert. Im abschließenden Kapitel der Arbeit wird dersogenannte 'Feynman-Beweis der Maxwellgleichungen' aufnichtkommutative Konfigurationsräume verallgemeinert.
Resumo:
In der Nichtkommutativen Geometrie werden Räume und Strukturen durch Algebren beschrieben. Insbesondere werden hierbei klassische Symmetrien durch Hopf-Algebren und Quantengruppen ausgedrückt bzw. verallgemeinert. Wir zeigen in dieser Arbeit, daß der bekannte Quantendoppeltorus, der die Summe aus einem kommutativen und einem nichtkommutativen 2-Torus ist, nur den Spezialfall einer allgemeineren Konstruktion darstellt, die der Summe aus einem kommutativen und mehreren nichtkommutativen n-Tori eine Hopf-Algebren-Struktur zuordnet. Diese Konstruktion führt zur Definition der Nichtkommutativen Multi-Tori. Die Duale dieser Multi-Tori ist eine Kreuzproduktalgebra, die als Quantisierung von Gruppenorbits interpretiert werden kann. Für den Fall von Wurzeln der Eins erhält man wichtige Klassen von endlich-dimensionalen Kac-Algebren, insbesondere die 8-dim. Kac-Paljutkin-Algebra. Ebenfalls für Wurzeln der Eins kann man die Nichtkommutativen Multi-Tori als Hopf-Galois-Erweiterungen des kommutativen Torus interpretieren, wobei die Rolle der typischen Faser von einer endlich-dimensionalen Hopf-Algebra gespielt wird. Der Nichtkommutative 2-Torus besitzt bekanntlich eine u(1)xu(1)-Symmetrie. Wir zeigen, daß er eine größere Quantengruppen-Symmetrie besitzt, die allerdings nicht auf die Spektralen Tripel des Nichtkommutativen Torus fortgesetzt werden kann.
Resumo:
The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.
Resumo:
Wir analysieren die Rolle von "Hintergrundunabhängigkeit" im Zugang der effektiven Mittelwertwirkung zur Quantengravitation. Wenn der nicht-störungstheoretische Renormierungsgruppen-(RG)-Fluß "hintergrundunabhängig" ist, muß die Vergröberung durch eine nicht spezifizierte, variable Metrik definiert werden. Die Forderung nach "Hintergrundunabhängigkeit" in der Quantengravitation führt dazu, daß die funktionale RG-Gleichung von zusätzlichen Feldern abhängt; dadurch unterscheidet sich der RG-Fluß in der Quantengravitation deutlich von dem RG-Fluß einer gewöhnlichen Quantentheorie, deren Moden-Cutoff von einer starren Metrik abhängt. Beispielsweise kann in der "hintergrundunabhängigen" Theorie ein Nicht-Gauß'scher Fixpunkt existieren, obwohl die entsprechende gewöhnliche Quantentheorie keinen solchen entwickelt. Wir untersuchen die Bedeutung dieses universellen, rein kinematischen Effektes, indem wir den RG-Fluß der Quanten-Einstein-Gravitation (QEG) in einem "konform-reduzierten" Zusammenhang untersuchen, in dem wir nur den konformen Faktor der Metrik quantisieren. Alle anderen Freiheitsgrade der Metrik werden vernachlässigt. Die konforme Reduktion der Einstein-Hilbert-Trunkierung zeigt exakt dieselben qualitativen Eigenschaften wie in der vollen Einstein-Hilbert-Trunkierung. Insbesondere besitzt sie einen Nicht-Gauß'schen Fixpunkt, der notwendig ist, damit die Gravitation asymptotisch sicher ist. Ohne diese zusätzlichen Feldabhängigkeiten ist der RG-Fluß dieser Trunkierung der einer gewöhnlichen $phi^4$-Theorie. Die lokale Potentialnäherung für den konformen Faktor verallgemeinert den RG-Fluß in der Quantengravitation auf einen unendlich-dimensionalen Theorienraum. Auch hier finden wir sowohl einen Gauß'schen als auch einen Nicht-Gauß'schen Fixpunkt, was weitere Hinweise dafür liefert, daß die Quantengravitation asymptotisch sicher ist. Das Analogon der Metrik-Invarianten, die proportional zur dritten Potenz der Krümmung ist und die die störungstheoretische Renormierbarkeit zerstört, ist unproblematisch für die asymptotische Sicherheit der konform-reduzierten Theorie. Wir berechnen die Skalenfelder und -imensionen der beiden Fixpunkte explizit und diskutieren mögliche Einflüsse auf die Vorhersagekraft der Theorie. Da der RG-Fluß von der Topologie der zugrundeliegenden Raumzeit abhängt, diskutieren wir sowohl den flachen Raum als auch die Sphäre. Wir lösen die Flußgleichung für das Potential numerisch und erhalten Beispiele für RG-Trajektorien, die innerhalb der Ultraviolett-kritischen Mannigfaltigkeit des Nicht-Gauß'schen Fixpunktes liegen. Die Quantentheorien, die durch einige solcher Trajektorien definiert sind, zeigen einen Phasenübergang von der bekannten (Niederenergie-) Phase der Gravitation mit spontan gebrochener Diffeomorphismus-Invarianz zu einer neuen Phase von ungebrochener Diffeomorphismus-Invarianz. Diese Hochenergie-Phase ist durch einen verschwindenden Metrik-Erwartungswert charakterisiert.