8 resultados para Noncommutative Geometry

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Über viele Jahre hinweg wurden wieder und wieder Argumente angeführt, die diskreten Räumen gegenüber kontinuierlichen Räumen eine fundamentalere Rolle zusprechen. Unser Zugangzur diskreten Welt wird durch neuere Überlegungen der Nichtkommutativen Geometrie (NKG) bestimmt. Seit ca. 15Jahren gibt es Anstrengungen und auch Fortschritte, Physikmit Hilfe von Nichtkommutativer Geometrie besser zuverstehen. Nur eine von vielen Möglichkeiten ist dieReformulierung des Standardmodells derElementarteilchenphysik. Unter anderem gelingt es, auch denHiggs-Mechanismus geometrisch zu beschreiben. Das Higgs-Feld wird in der NKG in Form eines Zusammenhangs auf einer zweielementigen Menge beschrieben. In der Arbeit werden verschiedene Ziele erreicht:Quantisierung einer nulldimensionalen ,,Raum-Zeit'', konsistente Diskretisierungf'ur Modelle im nichtkommutativen Rahmen.Yang-Mills-Theorien auf einem Punkt mit deformiertemHiggs-Potenzial. Erweiterung auf eine ,,echte''Zwei-Punkte-Raum-Zeit, Abzählen von Feynman-Graphen in einer nulldimensionalen Theorie, Feynman-Regeln. Eine besondere Rolle werden Termini, die in derQuantenfeldtheorie ihren Ursprung haben, gewidmet. In diesemRahmen werden Begriffe frei von Komplikationen diskutiert,die durch etwaige Divergenzen oder Schwierigkeitentechnischer Natur verursacht werden könnten.Eichfixierungen, Geistbeiträge, Slavnov-Taylor-Identität undRenormierung. Iteratives Lösungsverfahren derDyson-Schwinger-Gleichung mit Computeralgebra-Unterstützung,die Renormierungsprozedur berücksichtigt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der Nichtkommutativen Geometrie werden Räume und Strukturen durch Algebren beschrieben. Insbesondere werden hierbei klassische Symmetrien durch Hopf-Algebren und Quantengruppen ausgedrückt bzw. verallgemeinert. Wir zeigen in dieser Arbeit, daß der bekannte Quantendoppeltorus, der die Summe aus einem kommutativen und einem nichtkommutativen 2-Torus ist, nur den Spezialfall einer allgemeineren Konstruktion darstellt, die der Summe aus einem kommutativen und mehreren nichtkommutativen n-Tori eine Hopf-Algebren-Struktur zuordnet. Diese Konstruktion führt zur Definition der Nichtkommutativen Multi-Tori. Die Duale dieser Multi-Tori ist eine Kreuzproduktalgebra, die als Quantisierung von Gruppenorbits interpretiert werden kann. Für den Fall von Wurzeln der Eins erhält man wichtige Klassen von endlich-dimensionalen Kac-Algebren, insbesondere die 8-dim. Kac-Paljutkin-Algebra. Ebenfalls für Wurzeln der Eins kann man die Nichtkommutativen Multi-Tori als Hopf-Galois-Erweiterungen des kommutativen Torus interpretieren, wobei die Rolle der typischen Faser von einer endlich-dimensionalen Hopf-Algebra gespielt wird. Der Nichtkommutative 2-Torus besitzt bekanntlich eine u(1)xu(1)-Symmetrie. Wir zeigen, daß er eine größere Quantengruppen-Symmetrie besitzt, die allerdings nicht auf die Spektralen Tripel des Nichtkommutativen Torus fortgesetzt werden kann.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In den letzten fünf Jahren hat sich mit dem Begriff desspektralen Tripels eine Möglichkeit zur Beschreibungdes an Spinoren gekoppelten Gravitationsfeldes auf(euklidischen) nichtkommutativen Räumen etabliert. Die Dynamik dieses Gravitationsfeldes ist dabei durch diesogenannte spektrale Wirkung, dieSpur einer geeigneten Funktion des Dirac-Operators,bestimmt. Erstaunlicherweise kann man die vollständige Lagrange-Dichtedes (an das Gravitationsfeld gekoppelten) Standardmodellsder Elementarteilchenphysik, also insbesondere auch denmassegebenden Higgs-Sektor, als spektrale Wirkungeines entsprechenden spektralen Tripels ableiten. Diesesspektrale Tripel ist als Produkt des spektralenTripels der (kommutativen) Raumzeit mit einem speziellendiskreten spektralen Tripel gegeben. In der Arbeitwerden solche diskreten spektralen Tripel, die bis vorKurzem neben dem nichtkommutativen Torus die einzigen,bekannten nichtkommutativen Beispiele waren, klassifiziert. Damit kannnun auch untersucht werden, inwiefern sich dasStandardmodell durch diese Eigenschaft gegenüber anderenYang-Mills-Higgs-Theorien auszeichnet. Es zeigt sichallerdings, dasses - trotz mancher Einschränkung - eine sehr große Zahl vonModellen gibt, die mit Hilfe von spektralen Tripelnabgeleitet werden können. Es wäre aber auch denkbar, dass sich das spektrale Tripeldes Standardmodells durch zusätzliche Strukturen,zum Beispiel durch eine darauf ``isometrisch'' wirkendeHopf-Algebra, auszeichnet. In der Arbeit werden, um dieseFrage untersuchen zu können, sogenannte H-symmetrischespektrale Tripel, welche solche Hopf-Isometrien aufweisen,definiert.Dabei ergibt sich auch eine Möglichkeit, neue(H-symmetrische) spektrale Tripel mit Hilfe ihrerzusätzlichen Symmetrienzu konstruieren. Dieser Algorithmus wird an den Beispielender kommutativen Sphäre, deren Spin-Geometrie hier zumersten Mal vollständig in der globalen, algebraischen Sprache der NichtkommutativenGeometrie beschrieben wird, sowie dem nichtkommutativenTorus illustriert.Als Anwendung werden einige neue Beipiele konstruiert. Eswird gezeigt, dass sich für Yang-Mills Higgs-Theorien, diemit Hilfe von H-symmetrischen spektralen Tripeln abgeleitetwerden, aus den zusätzlichen Isometrien Einschränkungen andiefermionischen Massenmatrizen ergeben. Im letzten Abschnitt der Arbeit wird kurz auf dieQuantisierung der spektralen Wirkung für diskrete spektraleTripel eingegangen.Außerdem wird mit dem Begriff des spektralen Quadrupels einKonzept für die nichtkommutative Verallgemeinerungvon lorentzschen Spin-Mannigfaltigkeiten vorgestellt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Das Standardmodell der Elementarteilchenphysik istexperimentell hervorragend bestätigt, hat auf theoretischerSeite jedoch unbefriedigende Aspekte: Zum einen wird derHiggssektor der Theorie von Hand eingefügt, und zum anderenunterscheiden sich die Beschreibung des beobachtetenTeilchenspektrums und der Gravitationfundamental. Diese beiden Nachteile verschwinden, wenn mandas Standardmodell in der Sprache der NichtkommutativenGeometrie formuliert. Ziel hierbei ist es, die Raumzeit der physikalischen Theoriedurch algebraische Daten zu erfassen. Beispielsweise stecktdie volle Information über eine RiemannscheSpinmannigfaltigkeit M in dem Datensatz (A,H,D), den manspektrales Tripel nennt. A ist hierbei die kommutativeAlgebra der differenzierbaren Funktionen auf M, H ist derHilbertraum der quadratintegrablen Spinoren über M und D istder Diracoperator. Mit Hilfe eines solchen Tripels (zu einer nichtkommutativenAlgebra) lassen sich nun sowohl Gravitation als auch dasStandardmodell mit mathematisch ein und demselben Mittelerfassen. In der vorliegenden Arbeit werden nulldimensionale spektraleTripel (die diskreten Raumzeiten entsprechen) zunächstklassifiziert und in Beispielen wird eine Quantisierungsolcher Objekte durchgeführt. Ein Problem der spektralenTripel stellt ihre Beschränkung auf echt RiemannscheMetriken dar. Zu diesem Problem werden Lösungsansätzepräsentiert. Im abschließenden Kapitel der Arbeit wird dersogenannte 'Feynman-Beweis der Maxwellgleichungen' aufnichtkommutative Konfigurationsräume verallgemeinert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishabilty and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be interpreted as the spaces of sections of certain flat vector bundles over Q. With this technique, various results pertaining to the problem of quantum indistinguishability are reproduced in a clear and systematic way. Our method is also used in order to give a global formulation of the BR construction. As a result of this analysis, it is found that the single-valuedness condition of BR is inconsistent. Additionally, a proposal aiming at establishing the Fermi-Bose alternative, within our approach, is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If the generic fibre f−1(c) of a Lagrangian fibration f : X → B on a complex Poisson– variety X is smooth, compact, and connected, it is isomorphic to the compactification of a complex abelian Lie–group. For affine Lagrangian fibres it is not clear what the structure of the fibre is. Adler and van Moerbeke developed a strategy to prove that the generic fibre of a Lagrangian fibration is isomorphic to the affine part of an abelian variety.rnWe extend their strategy to verify that the generic fibre of a given Lagrangian fibration is the affine part of a (C∗)r–extension of an abelian variety. This strategy turned out to be successful for all examples we studied. Additionally we studied examples of Lagrangian fibrations that have the affine part of a ramified cyclic cover of an abelian variety as generic fibre. We obtained an embedding in a Lagrangian fibration that has the affine part of a C∗–extension of an abelian variety as generic fibre. This embedding is not an embedding in the category of Lagrangian fibrations. The C∗–quotient of the new Lagrangian fibration defines in a natural way a deformation of the cyclic quotient of the original Lagrangian fibration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stratosphärische Partikel sind typischerweise mit dem bloßen Auge nicht wahrnehmbar. Dennoch haben sie einen signifikanten Einfluss auf die Strahlungsbilanz der Erde und die heteorogene Chemie in der Stratosphäre. Kontinuierliche, vertikal aufgelöste, globale Datensätze sind daher essenziell für das Verständnis physikalischer und chemischer Prozesse in diesem Teil der Atmosphäre. Beginnend mit den Messungen des zweiten Stratospheric Aerosol Measurement (SAM II) Instruments im Jahre 1978 existiert eine kontinuierliche Zeitreihe für stratosphärische Aerosol-Extinktionsprofile, welche von Messinstrumenten wie dem zweiten Stratospheric Aerosol and Gas Experiment (SAGE II), dem SCIAMACHY, dem OSIRIS und dem OMPS bis heute fortgeführt wird. rnrnIn dieser Arbeit wird ein neu entwickelter Algorithmus vorgestellt, der das sogenannte ,,Zwiebel-Schäl Prinzip'' verwendet, um Extinktionsprofile zwischen 12 und 33 km zu berechnen. Dafür wird der Algorithmus auf Radianzprofile einzelner Wellenlängen angewandt, die von SCIAMACHY in der Limb-Geometrie gemessen wurden. SCIAMACHY's einzigartige Methode abwechselnder Limb- und Nadir-Messungen bietet den Vorteil, hochaufgelöste vertikale und horizontale Messungen mit zeitlicher und räumlicher Koinzidenz durchführen zu können. Die dadurch erlangten Zusatzinformationen können verwendet werden, um die Effekte von horizontalen Gradienten entlang der Sichtlinie des Messinstruments zu korrigieren, welche vor allem kurz nach Vulkanausbrüchen und für polare Stratosphärenwolken beobachtet werden. Wenn diese Gradienten für die Berechnung von Extinktionsprofilen nicht beachtet werden, so kann dies dazu führen, dass sowohl die optischen Dicke als auch die Höhe von Vulkanfahnen oder polarer Stratosphärenwolken unterschätzt werden. In dieser Arbeit wird ein Verfahren vorgestellt, welches mit Hilfe von dreidimensionalen Strahlungstransportsimulationen und horizontal aufgelösten Datensätzen die berechneten Extinktionsprofile korrigiert.rnrnVergleichsstudien mit den Ergebnissen von Satelliten- (SAGE II) und Ballonmessungen zeigen, dass Extinktionsprofile von stratosphärischen Partikeln mit Hilfe des neu entwickelten Algorithmus berechnet werden können und gut mit bestehenden Datensätzen übereinstimmen. Untersuchungen des Nabro Vulkanausbruchs 2011 und des Auftretens von polaren Stratosphärenwolken in der südlichen Hemisphäre zeigen, dass das Korrekturverfahren für horizontale Gradienten die berechneten Extinktionsprofile deutlich verbessert.