9 resultados para Nature of coordination polymers

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two general strategies for the functionalization of metathesis polymers are presented in this dissertation. Introducing Sacrificial Synthesis, many of the limitations of ruthenium-catalyzed ROMP have been overcome. Here, the living ROMP polymer to be functionalized was turned into a diblock copolymer by polymerizing dioxepine monomers onto the desired first polymer block. The second block was then later removed to leave “half-a-dioxepin”, i.e. exactly one hydroxyl group, at the chain-end. The efficiency of Sacrificial Synthesis is also studied. Thiol groups were also placed by a sacrificial strategy based on cyclic thioacetals. 2-Phenyl-1,3-dithiepin could be polymerized and subsequently cleaved by hydrogenation with Raney-Nickel. The presence of thiol groups on the chain end has been proven by chemical means (derivatization) and by coating gold-nanoparticles. The second strategy, vinyl lactone quenchingv is a termination reaction based on vinyl esters. After a metathesis step, an inactive Fischer-type carbene is formed. Such acyl carbenes are unstable and self-decompose to set an inactive ruthenium complex and the functional group free without changing the reaction conditions. The two compounds vinylene carbonate and 3H-furanone gave rise to the placement of aldehydes and carboxylic acids at the polymer chain ends without the necessity to perform any deprotection steps after the functionalization. The development of those two functionalization methods led to several applications. By reacting hydroxyl-functionalized ROMP-polymers with norbornene acid, macromonomers were formed which were subsequently polymerized to the respective graft-copolymers. Also, the derivatization of the same functionalized polymers with propargylic acid gave rise to alkyne-functionalized polymers which were conjugated with azides. Furthermore, “ugly stars”, i.e. long-chain branched structures were synthesized by polycondensation of ABn-type macromonomers and telechelic polymers were accessed combining the described functionalization techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While polymers with different functional groups along the backbone have intensively been investigated, there is still a challenge in orthogonal functionalization of the end groups. Such well-defined systems are interesting for the preparation of multiblock (co) polymers or polymer networks, for bio-conjugation or as model systems for examining the end group separation of isolated polymer chains. rnHere, Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization was employed as method to investigate improved techniques for an a, w end group functionalization. RAFT produces polymers terminated in an R group and a dithioester-Z group, where R and Z stem from a suitable chain transfer agent (CTA). rnFor alpha end group functionalization, a CTA with an activated pentafluorophenyl (PFP) ester R group was designed and used for the polymerization of various methacrylate monomers, N-isopropylacrylamide and styrene yielding polymers with a PFP ester as a end group. This allowed the introduction of inert propyl amides, of light responsive diazo compounds, of the dyes NBD, Texas Red, or Oregon Green, of the hormone thyroxin and allowed the formation of multiblocks or peptide conjugates. rnFor w end group functionalization, problems of other techniques were overcome through an aminolysis of the dithioester in the presence of a functional methane thiosulfonate (MTS), yielding functional disulfides. These disulfides were stable under ambient conditions and could be cleaved on demand. Using MTS chemistry, terminal methyl disulfides (enabling self-assembly on planar gold surfaces and ligand substitution on gold and semiconductor nanoparticles), butynyl disulfide end groups (allowing the “clicking” of the polymers onto azide functionalized surfaces and the selective removal through reduction), the bio-target biotin, and the fluorescent dye Texas Red were introduced into polymers. rnThe alpha PFP amidation could be performed under mild conditions, without substantial loss of DTE. This way, a step-wise synthesis produced polymers with two functional end groups in very high yields. rnAs examples, polymers with an anchor group for both gold nanoparticles (AuNP) and CdSe / ZnS semi-conductor nanoparticles (QD) and with a fluorescent dye end group were synthesized. They allowed a NP decoration and enabled an energy transfer from QD to dye or from dye to AuNP. Water-soluble polymers were prepared with two different bio-target end groups, each capable of selectively recognizing and binding a certain protein. The immobilization of protein-polymer-protein layers on planar gold surfaces was monitored by surface plasmon resonance.Introducing two different fluorescent dye end groups enabled an energy transfer between the end groups of isolated polymer chains and created the possibility to monitor the behavior of single polymer chains during a chain collapse. rnThe versatility of the synthetic technique is very promising for applications beyond this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, anodic aluminum oxide (AAO) membranes, which provide well-aligned uniform mesoscopic pores with adjustable pore parameters, were fabricated and successfully utilized as templates for the fabrication of functional organic nanowires, nanorods and the respective well-ordered arrays. The template-assisted patterning technique was successfully applied for the realization of different objectives:rnHigh-density and well-ordered arrays of hole-conducting nanorods composed of cross-linked triphenylamine (TPA) and tetraphenylbenzidine (TPD) derivatives on conductive substrates like ITO/glass have been successfully fabricated. By applying a freeze-drying technique to remove the aqueous medium after the wet-chemical etching of the template, aggregation and collapsing of the rods was prevented and macroscopic areas of perfectly freestanding nanorods were feasible. Based on the hole-conducting nanorod arrays and their subsequent embedding into an electron-conducting polymer matrix via spin-coating, a novel routine concept for the fabrication of well-ordered all-organic bulk heterojunction for organic photovoltaic applications was successfully demonstrated. The increased donor/acceptor interface of the fabricated devices resulted in a remarkable increase of the photoluminescence quenching compared to a planar bilayer morphology. Further, the fundamental working principle of the templating approach for the solution-based all-organic photovoltaic device was demonstrated for the first time.rnFurthermore, in order to broaden the applicability of patterned surfaces, which are feasible via the template-based patterning of functional materials, AAO with hierarchically branched pores were fabricated and utilized as templates. By pursuing the common templating process hierarchically polymeric replicas, which show remarkable similarities with interesting biostructures, like the surface of the lotus leaf and the feet of a gecko, were successfully prepared.rnIn contrast to the direct infiltration of organic functional materials, a novel route for the fabrication of functional nanowires via post-modification of reactive nanowires was established. Therefore, reactive nanowires based on cross-linked pentafluorophenylesters were fabricated by utilizing AAO templates. The post-modification with fluorescent dyes was demonstrated. Furthermore, reactive wires were converted into well-dispersed poly(N-isopropylacrylamide) (PNIPAM) hydrogels, which exhibit a thermal-responsive reversible phase transition. The reversible thermal-responsible swelling of the PNIPAM nanowires exhibited a more than 50 % extended length than in the collapsed PNIPAM state. rnLast but not least, the shape-anisotropic pores of AAO were utilized to uniformly align the mesogens of a nematic liquid crystalline elastomer. Liquid crystalline nanowires with a narrow size distribution and uniform orientation of the liquid crystalline material were fabricated. It was shown that during the transition from the nematic to the isotropic phase the rod’s length shortened by roughly 40 percent. As such these liquid crystalline elastomeric nanowires may find application, as wire-shaped nanoactuators in various fields of research, like lab-on-chip systems, micro fluidics and biomimetics.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Covalent grafting mesogenic groups to the coordination cores of the parent mononuclear low-spin and spin-crossover compounds afforded metallomesogenic complexes of iron(II). In comparison with the parent complexes the spin-crossover properties of the alkylated derivatives are substantially modified. The type of the modification was found to be dependent on the properties of the parent system and the nature of the used anion, however, the general tendency is the destabilization of the low-spin state at the favor of spin-crossover or high-spin behavior below 400 K. The structural insight revealed the micro-segregated layered organization. The effect of the alkylation of the parent compounds consists first of all in the change of the lattice to a two-dimensional lamellar one retaining significant intermolecular contacts only within the ionic bilayers. The comprehensive analysis of the structural and thermodynamic data in the homologous series pointed at the mechanism of the interplay between the structural modification on melting and the induced anomalous change of the magnetic properties. A family of one-dimensional spin-crossover polymers was synthesized and characterized using a series of spectroscopic methods, X-ray powder diffraction, magnetic susceptibility measurements and differential scanning calorimetry. The copper analogue of was also synthesized and its crystal structure solved. In comparison with the mononuclear systems, the polymeric mesogens of iron(II) are less sensitive to the glass transition, which was attributed to the moderate concomitant variation of the structure. Nevertheless, the observed increase of the magnetic hysteresis with lengthening of the alkyl substituents was ascribed to the interplay of the structural reorganization of the coordination core due to spin-crossover with the structural delay in the spatial reorganization of the mesogenic substituents. The classification of mononuclear and polymeric metallomesogens according to the interactions between the structural- and the spin-transition and analysis of the data on the reported spin-crossover metallomesogens led to the separation of three types, namely: Type i: systems with coupling between the electronic structure of the iron(II) ions and the mesomorphic behavior of the substance; Type ii: systems where both transitions coexist in the same temperature region but are not coupled due to competition with the dehydration or due to negligible structural transformation; Type iii: systems where both transitions occur in different temperature regions and therefore are uncoupled. Fine-tuning, in particular regarding the temperature at which the spin-transition occurs with hysteresis properties responsible for the memory effect, are still a major challenge towards practical implementation of spin-crossover materials. A possible answer to the problem could be materials in which the spin-crossover transition is coupled with another transition easily controllable by external stimuli. In the present thesis we have shown the viability of the approach realized in the mesogenic systems with coupled phase- and spin-transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In summary, thermoresponsive polyacrylamides with various amounts of different photoswitchable side groups, i. e. azobenzene, salicylideneaniline and fulgimide were successfully prepared. As such, in a first step three different chromophores with an amine functionality were synthesized. The synthesis of the stimuli-responsive materials was based on the RAFT polymerization of activated ester acrylates followed by a polymer analogous reaction with different amines. The procedure has been designed to allow the synthesis of well-defined materials with functional groups. All copolymers prepared in this way showed a LCST in aqueous solution. The LCST was in general decreased by increasing the amount of hydrophobic dye incorporated into the thermoresponsive polymer. However, in the case of the fulgimide, the LCST was hardly affected by the chromophore. For azobenzene containing PNIPAM polymers and analogues, higher LCST values were measured after irradiation of the polymer sample solutions with UV-light (Delta LCSTmax = 7.3°C). A reversible light-induced solubility change within a certain temperature range was possible. In contrast to this, irradiated samples of salicylideneaniline containing thermoresponsive copolymers showed an irreversible increase in the LCST (Delta LCSTmax = 13.0°C). Fulgimide chromophores did not influence the LCST of PNIPAM based copolymers after UV-light exposure.rnSimilar to the thermoresponsive polyacrylamides with azobenzene side groups, poly(oligo(ethylene glycol) methyl ether methacrylate) [P(OEGMA)] polymers with azobenzene end groups showed a LCST shift upon UV-irradiation. These polymers were synthesized by RAFT polymerization using a functional chain transfer agent (CTA). For this, PFP-CTA was used as a RAFT-agent for end group functionalization of (thermoresponsive) polymers. In contrast to the statistically arranged copolymers with azobenzene side groups, P(OEGMA) polymers with terminal azobenzene showed a linear increase of the LCST shifts with increasing amount of chromophore (Delta LCSTmax = 4.3°C). Noteworthy, the chemical nature of the end group exhibited a strong influence on the LCST in the case of short thermoresponsive P(OEGMA) polymers.rnThe investigation on temperature- and lightresponsive polymers was transferred onto block copolymers capable to self-assemble into polymeric micelles. Therefore, PEO-b-PNIPAM block copolymers with azobenzene moieties were synthesized successfully. These polymers showed a “smart” behavior in aqueous solution, as the reversible formation and disruption of the micelles could either be controlled by temperature or using light as a stimulus. The usefulness of these materials was demonstrated by encapsulation of a hydrophobic dye in the core of the micelle. Such materials might have a great potential as a model system for several technical or biological applications.rnFinally, double thermoresponsive block copolymers forming micellar structures in a certain temperature range with functional end groups could successfully be synthesized. These “smart materials” based on POEGMA-b-PNIPMAM have been demonstrated to be very promising for a temperature selective immobilization on a protein surface. This might be a suitable concept for further biological applications.rnConcluding, different thermoresponsive copolymers and block copolymers with lightresponsive moieties arranged along the backbone or located at the chain ends were successfully prepared and investigated. By controlling the nature of functional groups and their respective incorporation ratios, the LCST could be dialed in precisely. Further, the LCST of the polymers could be triggered by light. A light-controlled disruption of micellar structures could be shown for functional block copolymers. The importance of end groups of thermoresponsive polymers was demonstrated by a temperature-controlled protein-polymer binding of a terminal biotin-functionalized double thermoresponsive polymer. The synthetic approaches and the material properties presented here should be promising for further research and applications beyond this dissertation.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyamine polymers have attracted attention due to their ability to demonstrate pH dependent cationic nature and presence of highly reactive pendant amino groups. These amino groups make them suitable for a host of applications through cross-linking and derivatization. As a result the end use application of a polyamine is largely driven by the number of amino groups and the way they are attached to the polymer backbone. Thus, this piece of work describes the synthesis and investigation of properties of a novel aliphatic polyamine, poly(methylene amine); that carries maximum number of amino group on its backbone. The target polymer, poly(methylene amine); was synthesized via two major steps viz.1.synthesis of precursor polymers of poly(methylene amine) and 2. Hydrolysis of the precursor polymers to obtain poly(methylene amine). The precursor polymers poly (1,3-diacetylimidazole-2-one)(6) and poly(1,3-diformyldihydroimidazol-2-one)(7) were synthesized via radical polymerization of their respective monomers. The monomers were polymerized in bulk as well as in solution at different reaction conditions. The maximum molecular weights were achieved by polymerizing the monomers in bulk (Mn = 6.5 x 104 g/mol and Mw = 2.13 x 105 g/mol) of 6. The precursor polymers were hydrolyzed under strong reaction conditions in ethanol in presence of NaOH, LiCl at 170°C to yield poly(methylene amine). The process of hydrolysis was monitored by IR spectroscopy. The solution properties of poly(methylene amine) and its hydrochloride were investigated by viscosimetry and light scattering. The reduced viscosity of poly (methylene amine) hydrochloride as a function of polymer concentration demonstrated a behavior typical of cationic polyelectrolyte. With decrease in polymer concentration the reduced viscosity of poly(methylene amine) hydrochloride increased gradually. The dynamic light scattering studies also revealed behaviors of a polyelectrolyte. Poly(methylene amine) was reacted with electrophiles to yield novel materials. While the attachment of alkyl group onto the nitrogen would increase nucleophilicity, it would also impose steric hindrance. As a result the degree of substitution on poly(methylene amine) would be governed by both the factors. Therefore, few model reactions with electrophiles were performed on polvinylamine under similar reaction conditions in order to make a comparative evaluation. It was found that under similar reaction conditions the degree of substitution was higher in case of polyvinylamine in comparison with poly (methylene amine).This shows that the steric hindrance outweighs nucleophilicity while deciding degree of substitution of electrophiles on poly(methylene amine). The modification was further extended to its use as an initiator for ring opening polymerization of benzyloxy protected N-carboxyanhydride of z-Lysine. The resulting polymer had an interesting brush like architecture. The solid state morphology of this polymer was investigated by SAXS. The 2D-WAXS diffractograms revealed hexagonal morphology of peptide segments without formation of alpha helices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis can be divided in three main parts. In all parts new polymer architecturesrnwere synthesized and characterized concerning their special features.rnThe first part will emphasize the advantage of a polystyrene-block-(hyperbranchedrnpolyglycerol) copolymer in comparison to an analogue polystyrene-block-(linear polyglycerol)rncopolymer. Therefore a synthethic route to prepare linear block copolymersrnhas been developed. Two strategies were examined. One strategy was based on thernclassic, sequential anionic polymerization; the second strategy was based on arn“Click-Chemistry” coupling reaction. In a following step glycidol was hypergraftedrnfrom these block copolymers by applying a hypergrafting reaction with glycidol. Thernbehavior of the amphiphilic block copolymers synthesized was studied in differentrnsolvents. Furthermore the polarity of the solvent was changed to form the correspondingrninverse micelles. DLS, SLS, SEC-MALLS-VISCO, AFM and Cyro TEMrnmeasurements were performed to obtain a visual image from the appearance of thernaggregates. It was found that a linear-hyperbranched architecture is necessary, ifrnwell defined, monodisperse aggregates are required, e.g. for the preparation of orderedrnnanoarrays. Linear-linear block copolymers formed only polydisperse aggregates.rnAdditionally it was found that size distribution could be improved dramaticallyrnby passing the aggregates through a SEC column with large pores. The SEC columnsrnacted like a template in which the aggregates adopt a more stable conformation.rnIn the second part anionic polymerization was employed to synthesize silaneendfunctionalizedrnmacromonomers with different molecular weights based on polybutadienernand polyisoprene. These were polymerized by a hydrosilylation reaction inrnbulk to obtain branched polymers, using Karstedt’s catalyst. Surprisingly the additionrnof monofunctional silanes during the polymerization had only a minimal effect concerningrnthe degree of polymerization. It was possible to introduce silanes without increasingrnthe overall number of reaction steps by a very convenient “pseudo-copolymerization”rnmethod. All branched polymers were analyzed by SEC, SEC-MALLS,rnSEC-viscometry, 1H-NMR-spectroscopy and DSC concerning their branching ratio.rnThe branching parameters for the branched polymers exhibited similar characteristicsrnas hyperbranched polymers based on AB2 monomers. Detailed kinetic study showedrnthat the polymerization occurred very rapidly in comparison to the hydrosilylation polymerizationrnof classical AB2 type carbosilanes monomers.rnThe last part will deal with ferrocenyl-functionalized polymers. On the one hand,rnferrocenyl-functionalized polyglycerols (PG) were studied. Esterification of PGs withrndifferent molecular weight using ferrocenemonocarboxylic acid gave the ferrocenylrnfuntionalized polymers in high yields. On the other hand three different block copolymersrnwere prepared with different ratios of styrene to butadiene units (10:1, 4:1, 2:1).rnThe double bonds of the 1,2-PB block were hydrosilylated using silanes bearing onern(HSiMe2Fc) or two (HSiMeFc2) ferrocene units. High degrees of functionalizationrnwere obtained (up to 83 %). In this manner, six different ferrocenyl-rich block copolymersrnwith different fractions of ferrocene were prepared and analyzed, employingrnNMR-spectroscopy, SEC, SEC/MALLS/viscometry, DLS and cyclic voltammetry. Thernredox properties of the studied polymers varied primarily with the nature of the silanernunit attached. Additionally, the redox properties in solution of the studied polymersrnwere influenced by the block length ratio of the block copolymers. Unexpectedly, withrnincreasing block length of the ferrocenyl block the fraction of active ferrocenes decreased.rnNevertheless, in case of thin monolayer films this behaviour was not observed.rnAll polymers (PG and PS-b-PB based) exhibited good electrochemical propertiesrnin a wide range of solvents, which rendered them very interesting for biosensoricrnapplications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique characteristic of soft matter is its ability to self-assemble into larger structures. Characterizing these structures is crucial for their applications. In the first part of this work, I investigated DNA-organic hybrid material by means of Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS). DNA-organic hybrid materials, a novel class of hybrid materials composed of synthetic macromolecules and oligodeoxynucleotide segmenta, are mostly amphiphilic and can self-assemble into supramolecular structures in aqueous solution. A hybrid material of a fluorophore, perylenediimide (PDI), and a DNA segment (DNA-PDI) has been developed in Prof. A. Hermann’s group (University of Groningen). This novel material has the ability to form aggregates through pi-pi stacking between planar PDIs and can be traced in solution due to the fluorescence of PDI. I have determined the diffusion coefficient of DNA-PDI conjugates in aqueous solution by means of FCS. In addition, I investigated whether such DNA-PDIs form aggregates with certain structure, for instance dimers. rnOnce the DNA hybrid material self-assemble into supermolecular structures for instance into micelles, the single molecules do not necessarily stay in one specific micelle. Actually, a single molecule may enter and leave micelles constantly. The average residence time of a single molecule in a certain micelle depends on the nature of the molecule. I have chosen DNA-b-polypropylene oxide (PPO) as model molecules and investigated the residence time of DNA-b-PPO molecules in their according micelles by means of FCCS.rnBesides the DNA hybrid materials, polymeric colloids can also form ordered structures once they are brought to an air/water interface. Here, hexagonally densely packed monolayers can be generated. These monolayers can be deposited onto different surfaces as coating layers. In the second part of this work, I investigated the mechanical properties of such colloidal monolayers using micromechanical cantilevers. When a coating layer is deposited on a cantilever, it can modify the elasticity of the cantilever. This variation can be reflected either by a deflection or by a resonance frequency shift of the cantilever. In turn, detecting these changes provides information about the mechanical properties of the coating layer. rnIn the second part of this work, polymeric colloidal monolayers were coated on a cantilever and homogenous polymer films of a few hundred nanometers in thickness were generated from these colloidal monolayers by thermal annealing or organic vapor annealing. Both the film formation process and the mechanical properties of these resulting homogenous films were investigated by means of cantilever. rnElastic property changes of the coating film, for example upon absorption of organic vapors, induce a deflection of the cantilever. This effect enables a cantilever to detect target molecules, when the cantilever is coated with an active layer with specific affinity to target molecules. In the last part of this thesis, I investigated the applicability of suitably functionalized micromechanical cantilevers as sensors. In particular, glucose sensitive polymer brushes were grafted on a cantilever and the deflection of this cantilever was measured during exposure to glucose solution. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zur Untersuchung von Effekten beim Laserheizen von Polymeren wurde ein Temperaturmessaufbau entwickelt. Das Messprinzip basiert auf der Auswertung der thermischen Emission. Der Messaufbau besteht aus einer hochauflösenden Kamera, ausgestattet mit Bildverstärker, sowie Interferenzfiltern um eine spektrale Auflösung zu gewährleisten und einem gepulster NIR-Heizlaser. Die Pulsdauer des Lasers liegt in der Größenordnung von 10 µs, der Strahldurchmesser durch entsprechende Fokussierung in der Größenordnung von 10 µm. Mittels Fit des Planck‘schen Strahlungsgesetzes an die aufgenommene thermische Emission konnten 2D Temperaturgraphen erhalten werden. Eine Ortsauflösung von 1 µm und eine Zeitauflösung von 1 µs konnten realisiert werden. In Kombination mit Finite-Elemente-Simulationen wurde mit diesem Aufbau die Laserablation verschiedener Polymere untersucht. Dabei hat sich gezeigt, dass bei Polymeren mit einem Glasübergang im Temperaturbereich zwischen Raum- und Zerfallstemperatur, photomechanische Ablation stattfand. Die Ablationsschwelle lag für diese Polymere mehrere 10 K über dem Glasübergang, weit unter der Zerfallstemperatur aus thermogravimetrischen Experimenten mit typischen Heizraten von 10 K/min. Bei hohen Laserenergien und damit verbundenen hohen Temperaturen konnte dagegen thermischer Zerfall beobachtet werden. Ein Übergang des Mechanismus von photomechanischer Ablation zu Ablation durch thermischen Zerfall ergab sich bei Temperaturen deutlich über der Zerfallstemperatur des Polymers aus der Thermogravimetrie. Dies wurde bedingt durch die kurzen Reaktionszeiten des Laserexperiments in der Größenordnung der Pulsdauer und steht im Einklang mit dem Gesetz von Arrhenius. Polymere ohne Glasübergang im Heizbereich zeigten dagegen keine photomechanische Ablation, sondern ausschließlich thermischen Zerfall. Die Ablationsschwelle lag auch hier bei höheren Temperaturen, entsprechend dem Gesetz von Arrhenius. Hohe Temperaturen, mehrere 100 K über der Zerfallstemperatur, ergaben sich darüber hinaus bei hohen Laserenergien. Ein drastisches Überhitzen des Polymers, wie in der Literatur beschrieben, konnte nicht beobachtet werden. Experimentelle Befunde deuten vielmehr darauf hin, dass es sich bei dem heißen Material um thermische Zerfallsprodukte, Polymerfragmente, Monomer und Zerfallsprodukte des Monomers handelte bzw. das Temperaturprofil der Zerfallsreaktion selbst visualisiert wurde.