11 resultados para Molecular cell assembly

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a detailed and successful study of molecular self-assembly on the calcite CaCO3(10-14) surface. One reason for the superior applicability of this particular surface is given by reflecting the well-known growth modes. Layer-by-layer growth, which is a necessity for the formation of templated two-dimensional (2D) molecular structures, is particularly favoured on substrates with a high surface energy. The CaCO3(10-14) surface is among those substrates and, thus, most promising. rnrnAll experiments in this thesis were performed using the non-contact atomic force microscope (NC-AFM) under ultra-high vacuum conditions. The acquisition of drift-free data became in this thesis possible owing to the herein newly developed atom-tracking system. This system features a lateral tip-positioning precision of at least 50pm. Furthermore, a newly developed scan protocol was implemented in this system, which allows for the acquisition of dense three-dimensional (3D) data under room-temperature conditions. An entire 3D data set from a CaCO3(10-14) surface consisting of 85x85x500 pixel is discussed. rnrnThe row-pairing and (2x1) reconstructions of the CaCO3(10-14) surface constitute most interesting research subjects. For both reconstructions, the NC-AFM imaging was classified to a total of 12 contrast modes. Eight of these modes were observed within this thesis, some of them for the first time. Together with literature findings, a total of 10 modes has been observed experimentally to this day. Some contrast modes presented themselves as highly distance-dependent and at least for one contrast mode, a severe tip-termination influence was found. rnrnMost interestingly, the row-pairing reconstruction was found to break a symmetry element of the CaCO3(10-14) surface. With the presence of this reconstruction, the calcite (10-14) surface becomes chiral. From high-resolution NC-AFM data, the identification of the enantiomers is here possible and is presented for one enantiomer in this thesis. rnrnFive studies of self-assembled molecular structures on calcite (10-14) surfaces are presented. Only for one system, namely HBC/CaCO3(10-14), the formation of a molecular bulk structure was observed. This well-known occurence of weak molecule-insulator interaction hinders the investigation of two-dimensional molecular self-assembly. It was, however, possible to force the formation of an island phase for this system upon following a variable-temperature preparation. rnFor the C60/CaCO3(10-14) system it is most notably that no branched island morphologies were found. Instead, the first C60 layer appeared to wet the calcite surface. rnrnIn all studies, the molecules arranged themselves in ordered superstructures. A templating effect due to the underlying calcite substrate was evident for all systems. This templating strikingly led either to the formation of large commensurate superstructures, such as (2x15) with a 14 molecule basis for the C60/CaCO3(10-14) system, or prevented the vast growth of incommensurate molecular motifs, such as the chicken-wire structure in the trimesic acid (TMA)/CaCO3(10-14) system. rnrnThe molecule-molecule and the molecule-substrate interaction was increased upon choosing molecules with carboxylic acid moieties in the third, fourth and fifth study, using terephthalic acid, TMA and helicene molecules. In all these experiments, hydrogen-bonded assemblies were created. rnrnDirected hydrogen bond formation combined with intermolecular pi-pi interaction is employed in the fifth study, where the formation of uni-directional molecular "wires" from single helicene molecules succeeded. Each "wire" is composed of heterochiral helicene pairs, well-aligned along the [01-10] substrate direction and stabilised by pi-pi interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the investigation of systematically varied organic molecules for use in molecular self-assembly processes. All experiments were performed using high-resolution non-contact atomic force microscopy under UHV conditions and at room temperature. Using this technique, three different approaches for influencing intermolecular and molecule-surface interaction on the insulating calcite(10.4) surface were investigated by imaging the structure formation at the molecular scale. I first demonstrated the functionalization of shape-persistent oligo(p-benzamide)s that was engineered by introducing different functional groups and investigating their effect on the structural formation on the sample surface. The molecular core was designed to provide significant electrostatic anchoring towards the surface, while at the same time maintaining the flexibility to fine-tune the resulting structure by adjusting the intermolecular cohesion energy. The success of this strategy is based on a clear separation of the molecule-substrate interaction from the molecule-molecule interaction. My results show that sufficient molecule-surface anchoring can be achieved without restricting the structural flexibility that is needed for the design of complex molecular systems. Three derivatives of terephthalic acid (TPA) were investigated in chapter 7. Here, the focus was on changing the adhesion to the calcite surface by introducing different anchor functionalities to the TPA backbone. For all observed molecules, the strong substrate templating effect results in molecular structures that are strictly oriented along the calcite main crystal directions. This templating is especially pronounced in the case of 2-ATPA where chain formation on the calcite surface is observed in contrast to the formation of molecular layers in the bulk. At the same time, the amino group of 2-ATPA proved an efficient anchor functionality, successfully stabilizing the molecular chains on the sample surface. These findings emphasizes, once again, the importance of balancing and fine-tuning molecule-molecule and molecule-surface interactions in order to achieve stable, yet structurally flexible molecular arrangements on the sample surface. In the last chapter, I showed how the intrinsic property of molecular chirality decisively influences the structure formation in molecular self-assembly. This effect is especially pronounced in the case of the chiral heptahelicene-2-carboxylic acid. Deposition of the enantiopure molecules results in the formation of homochiral islands on the sample surface which is in sharp contrast to the formation of uni-directional double rows upon deposition of the racemate onto the same surface. While it remained uncertain from these previous experiments whether the double rows are composed of hetero- or homochiral molecules, I could clearly answer that question here and demonstrate that the rows are of heterochiral origin. Chirality, thus, proves to be another important parameter to steer the intermolecular interaction on surfaces. Altogether, the results of this thesis demonstrate that, in order to successfully control the structure formation in molecular self-assembly, the correct combination of molecule and surface properties is crucial. This is of special importance when working on substrates that exhibit a strong influence on the structure formation, such as the calcite(10.4) surface. Through the systematic variation of functional groups several important parameters that influence the balance between molecule-surface and molecule-molecule interaction were identified here, and the results of this thesis can, thus, act as a guideline for the rational design of molecules for use in molecular self-assembly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die Bildung kieselsäurehaltiger Spicula in marinen Schwämmen ist nur möglich durch die enzymatische Aktivität des Silicatein- in Verbindung mit der stöchiometrischen Selbstassemblierung des Enzyms mit anderen Schwammproteinen. Die vorliegende Arbeit basiert auf einem biomimetischen Ansatz mit dem Ziel, unterschiedliche Oberflächen für biotechnologische und biomedizinische Anwendungen mit Biosilica und Biotitania zu beschichten und zu funktionalisieren. Für biotechnologische Anwendungen ist dabei das Drucken von Cystein-getaggtem Silicatein auf Gold-Oberflächen von Bedeutung, denn es ermöglichte die Bildung definierter Biotitania-Strukturen (Anatas), welche als Photokatalysator den Abbau eines organischen Farbstoffs bewirkten. Des Weiteren zeigte sich die bio-inspirierte Modifikation von Tyrosin-Resten an rekombinantem Silicatein-(via Tyrosinase) als vielversprechendes Werkzeug zur Beschleunigung der Selbstassemblierung des Enzyms zu mesoskaligen Filamenten. Durch eine solche Modifikation konnte Silicatein auch auf der Oberfläche von anorganischen Partikeln immobilisiert werden, welches die Assemblierung von anorganisch-organischen Verbundwerkstoffen in wäßriger Umgebung förderte. Die resultierenden supramolekularen Strukturen könnten dabei in bio-inspirierten und biotechnologischen Anwendungen genutzt werden. Weiterhin wurde in der vorliegenden Arbeit die Sekundärstruktur von rekombinantem Silicatein- (Monomer und Oligomer) durch Raman Spektroskopie analysiert, nachdem das Protein gemäß einer neu etablierten Methode rückgefaltet worden war. Diese Spektraldaten zeigten insbesondere Änderungen der Proteinkonformation durch Solubilisierung und Oligomerisierung des Enzyms. Außerdem wurden die osteoinduzierenden und osteogenen Eigenschaften unterschiedlicher organischer Polymere, die herkömmlich als Knochenersatzmaterial genutzt werden, durch Oberflächenmodifikation mit Silicatein/Biosilica verbessert: Die bei der Kultivierung knochenbildender Zellen auf derart oberflächenbehandelten Materialien beobachtete verstärkte Biomineralisierung, Aktivierung der Alkalischen Phosphatase, und Ausbildung eines typischen zellulären Phänotyps verdeutlichen das Potential von Silicatein/Biosilica für der Herstellung neuartiger Implantat- und Knochenersatzmaterialien.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Für die Realisierung zukünftiger Technologien, wie z.B. molekulare Elektronik, werden Strategien benötigt, um funktionale Strukturen direkt auf Oberflächen zu erzeugen. Für die Bewältigung dieser Aufgabe ist die molekulare Selbstanordnung ein äußerst vielversprechender Bottom-up-Ansatz. Hierbei ist eine der größten Herausforderungen das Zusammenspiel aus intramolekularer Wechselwirkung und der Wechselwirkung zwischen Substrat und Molekülen in ein Gleichgewicht zu bringen. Da jedoch die wirkenden Kräfte der molekularen Selbstanordnung ausschließlich reversibler Natur sind, ist eine langfristige Stabilität fragwürdig. Somit ist die kovalente Verknüpfung der gebildeten Strukturen durch Reaktionen direkt auf der Oberfläche unerlässlich, um die Stabilität der Strukturen weiter zu erhöhen. Hierzu stellt die vorliegende Arbeit eine ausführliche Studie zu molekularer Selbstanordnung und der zielgerichteten Modifikation ebensolcher Strukturen dar. Durch den Einsatz von hochauflösender Rasterkraftmikroskopie im Ultrahochvakuum, welche es erlaubt einzelne Moleküle auf Nichtleitern abzubilden, wurde der maßgebliche Einfluss von Ankerfunktionalitäten auf den Prozess der molekularen Selbstanordnung gezeigt. Des Weiteren konnte die Stabilität der selbst angeordneten Strukturen durch neue Oberflächenreaktionskonzepte entschieden verbessert werden. Der Einfluss von Ankerfunktionen, die elektrostatische Wechselwirkung zwischen Molekül und Substrat vermitteln, auf den Strukturbildungsprozess der molekularen Selbstanordnung wird eingehend durch den Vergleich eines aromatischen Moleküls und seines vierfach chlorierten Derivates gezeigt. Für diese beiden Moleküle wurde ein deutlich unterschiedliches Verhalten der Selbstanordnung beobachtet. Es wird gezeigt, dass die Fähigkeit zur Bildung selbst angeordneter, stabiler Inseln entscheidend durch die Substituenten und die Abmessungen des Moleküls beeinflusst wird. Auch wird in dieser Arbeit die erste photochemische Reaktion organischer Moleküle auf einem Isolator gezeigt. Qualitative und quantitative Ergebnisse liefern ein detailliertes Bild darüber, wie die Abmessungen des Substratgitters die Richtung der Reaktion gezielt beeinflussen. Des Weiteren wird ein allgemeines Konzept zur selektiven Stabilisierung selbstangeordneter Molekülstrukturen durch den kontrollierten Transfer von Elektronen präsentiert. Durch die gezielte Steuerung der Menge an Dotierungsatomen wird die Desorptionstemperatur der molekularen Inseln signifikant erhöht und das Desorptionsverhalten der Inseln entschieden verändert. Diese Arbeit präsentiert somit erfolgreich durchgeführte Strategien um den Prozess der molekularen Selbstanordnung zu steuern, sowie entscheidende Mechanismen um die Stabilisierung und Modifizierung von selbst angeordneten Strukturen zu gewährleisten.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the basic concepts of molecular self-assembly is that the morphology of the aggregate is directly related to the structure and interaction of the aggregating molecules. This is not only true for the aggregation in bulk solution, but also for the formation of Langmuir films at the air/water interface. Thus, molecules at the interface do not necessarily form flat monomolecular films but can also aggregate into multilayers or surface micelles. In this context, various novel synthetic molecules were investigated in terms of their morphology at the air/water interface and in transferred films. rnFirst, the self-assembly of semifluorinated alkanes and their molecular orientation at the air/water interface and in transferred films was studied employing scanning force microscopy (SFM) and Kelvin potential force microscopy. Here it was found, that the investigated semifluorinated alkanes aggregate to form circular surface micelles with a diameter of 30 nm, which are constituted of smaller muffin-shaped subunits with a diameter of 10 nm. A further result is that the introduction of an aromatic core into the molecular structure leads to the formation of elongated surface micelles and thus implements a directionality to the self-assembly. rnSecond, the self-assembly of two different amphiphilic hybrid materials containing a short single stranded desoxyribonucleic acid (DNA) sequence was investigated at the air/water interface. The first molecule was a single stranded DNA (11mer) molecule with two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases at the terminal 5'-end of the oligonucleotide sequence. Isotherm measurements revealed the formation of semi-stable films at the air/water interface. SFM imaging of films transferred via Langmuir-Blodgett technique supported this finding and indicated mono-, bi- and multilayer formation, according to the surface pressure applied upon transfer. Within these films, the hydrophilic DNA sequence was oriented towards air covering 95% of the substrate.rnSimilar results were obtained with a second type of amphiphile, a DNA block copolymer. Furthermore, the potential to perform molecular recognition experiments at the air/water interface with these DNA hybrid materials was evaluated.rnThird, polyglycerol ester molecules (PGE), which are known to form very stable foams, were studies. Aim was to elucidate the molecular structure of PGE molecules at the air/water interface in order to comprehend the foam stabilization mechanism. Several model systems mimicking the air/water interface of a PGE foam and methods for a noninvasive transfer were tested and characterized by SFM. It could be shown, that PGE stabilizes the air/water interface of a foam bubble by formation of multiple surfactant layers. Additionally, a new transfer technique, the bubble film transfer was established and characterized by high speed camera imaging.The results demonstrate the diversity of structures, which can be formed by amphiphilic molecules at the air/water interface and after film transfer, as well as the impact of the chemical structure on the aggregate morphology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diese Arbeit beschreibt zum ersten Mal die kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche, motiviert im Hinblick auf die Nutzung der Synthesemethode für die molekulare Elektronik und verwandte Anwendungen. Durch die Verwendung der Nichtkontakt-Rasterkraftmikroskopie und der Kelvinprobe-Mikroskopie bei Raumtemperatur wurden grundlegende molekulare Prozesse der Wechselwirkungen zwischen Molekülen und der Calcit(10.4) Oberfläche sowie die chemische Reaktivität der Moleküle auf der Oberfläche analysiert. Das Zusammenspiel zwischen intermolekularen und Molekül-Oberfläche Wechselwirkungen zeigt sich für Biphenyl-4,4'-dicarbonsäure (BPDCA) durch die Koexistenz zweier unterschiedlicher molekularer Strukturen, die einen Einblick in die treibenden Kräfte der molekularen Selbstorganisation bieten. Die sehr ausgeprägte Reihenstruktur basiert auf der optimalen geometrischen Struktur der BPDCA Moleküle zu den Abmessungen des Substrats, während die zweite Struktur durch Wasserstoffbrücken zwischen den Molekülen gekennzeichnet ist. Der Deprotonierungsvorgang von 2,5-Dihydroxybenzoesäure (DHBA)-Molekülen auf Calcit wird bei Zimmertemperatur gezeigt. Zwei Phasen werden beobachtet, die nach Aufbringen der Moleküle koexistieren. Mit der Zeit geht eine bulk-ähnliche Phase in eine stabile, dicht gepackte Phase über. Der Übergang wird durch Betrachtung des Protonierungszustands der Moleküle erklärt. Die bulk-ähnliche Phase benötigt Wasserstoffbrückbindungen zur Strukturbildung. Werden die Moleküle deprotoniert, so wird die resultierende dicht gepackte Phase durch die elektrostatische Wechselwirkung der deprotonierten Carboxylatgruppen mit den Oberflächen-Calciumkationen stabilisiert. 4-Iodbenzoesäure (IBA)-Moleküle bilden auf Calcit nur Inseln an Stufenkanten, was auf die schwache Molekül-Oberflächen-Wechselwirkung zurückzuführen ist. Für einen stärkeren Einfluss des Substrats durchlaufen die Moleküle einen kontrollierten Übergangsschritt vom protonierten zum deprotonierten Zustand. Im deprotonierten Zustand nehmen die Moleküle eine wohldefinierte Adsorptionsposition auf dem Substrat ein. Die deprotonierte Säuregruppe wird ausgenutzt, um die Desorption der halogensubstituierten Benzoesäure-Moleküle bei der thermischer Aktivierung für die Vernetzungsreaktion zu vermeiden. Darüber hinaus wird die Carboxylatgruppe als starker Elektronendonor verwendet um die Phenyl-Halogen-Bindung zu schwächen und somit die homolytische Spaltung dieser Bindung auch bei moderaten Temperaturen zu ermöglichen. Diesem Konzept folgend ist die erste erfolgreiche kovalente Verknüpfung von 2,5-Diiod-benzoesäure, 2,5-Dichlorbenzoesäure, 3,5-Diiod Salicylsäure und 4-Iod-benzoesäure zu durchkonjugierten molekularen Drähten, Zick-Zack-Strukturen sowie Dimere gezeigt durch Ausnutzen von unterschiedlichen Substitutionsposition sowie Ändern der Anzahl der substituierten Halogenatome. Aufbauend auf diesem Erfolg, wird eine zweistufige Vernetzungsreaktion vorgestellt. Zum Induzieren der ortsspezifischen und sequentiellen kovalenten Verknüpfung wird ein Ausgangsmolekül gewählt, das sowohl eine Bromphenyl als auch eine Chlorphenyl Gruppe mit unterschiedlichen Dissoziationsenergien für die homolytische Spaltung besitzt. Die Reaktionsstellen und sequentielle Reihenfolge für die Reaktion sind somit in der molekularen Struktur einkodiert und bisher unerreichte Reaktionspfade können mithilfe der kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche beschritten werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Arbeit beschäftigt sich mit der Kontrolle von Selbstorganisation und Mikrostruktur von organischen Halbleitern und deren Einsatz in OFETs. In Kapiteln 3, 4 und 5 eine neue Lösungsmittel-basierte Verabeitungsmethode, genannt als Lösungsmitteldampfdiffusion, ist konzipiert, um die Selbstorganisation von Halbleitermolekülen auf der Oberfläche zu steuern. Diese Methode als wirkungsvolles Werkzeug erlaubt eine genaue Kontrolle über die Mikrostruktur, wie in Kapitel 3 am Beispiel einer D-A Dyad bestehend aus Hexa-peri-hexabenzocoronene (HBC) als Donor und Perylene Diimide (PDI) als Akzeptor beweisen. Die Kombination aus Oberflächenmodifikation und Lösungsmitteldampf kann die Entnetzungseffekte ausgleichen, so dass die gewüschte Mikrostruktur und molekulare Organisation auf der Oberfläche erreicht werden kann. In Kapiteln 4 und 5 wurde diese Methode eingesetzt, um die Selbstorganisation von Dithieno[2, 3-d;2’, 3’-d’] benzo[1,2-b;4,5-b’]dithiophene (DTBDT) und Cyclopentadithiophene -benzothiadiazole copolymer (CDT-BTZ) Copolymer zu steuern. Die Ergebnisse könnten weitere Studien stimulieren und werfen Licht aus andere leistungsfaähige konjugierte Polymere. rnIn Kapiteln 6 und 7 Monolagen und deren anschlieβende Mikrostruktur von zwei konjugierten Polymeren, Poly (2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) PBTTT und Poly{[N,N ′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis (dicarboximide)-2,6-diyl]-alt-5,5′- (2,2′-bithiophene)}, P(NDI2OD-T2)) wurden auf steife Oberflächen mittels Tauchbeschichtung aufgebracht. Da sist das erste Mal, dass es gelungen ist, Polymer Monolagen aus der Lösung aufzubringen. Dieser Ansatz kann weiter auf eine breite Reihe von anderen konjugierten Polymeren ausgeweitet werden.rnIn Kapitel 8 wurden PDI-CN2 Filme erfolgreich von Monolagen zu Bi- und Tri-Schichten auf Oberflächen aufgebracht, die unterschiedliche Rauigkeiten besitzen. Für das erste Mal, wurde der Einfluss der Rauigkeit auf Lösungsmittel-verarbeitete dünne Schichten klar beschrieben.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die vorliegende Arbeit hatte zum Ziel, die enzymatische Deglucosylierung von Strictosidin in Zellsuspensionskulturen von Rauvolfia serpentina zu charakterisieren.Ein Verfahren zur Isolierung und Reinigung von Strictosidin aus pflanzlicher Zellkulturen wurde entwickelt. Zwei somatische Hybridzellkulturen zwischen R. serpentina und Rhazya stricta wurden als potenzielle Quelle dieses Glucoalkaloides untersucht. Der Sekundärstoffwechsel der pflanzlichen Zellen wurde mit Methyljasmonat induziert und 15 Stoffe wurden identifiziert, u. a. das neue Indolalkaloid 3-Oxo-rhazinilam. Die Gehaltsänderung von 7 Indolalkaloiden nach Behandlung mit Methyljasmonat wurde untersucht.Deglucosylierung von Strictisidin bei in E. coli exprimierter Raucaffricin Glucosidase wurde detektiert.Die Strictosidin Glucosidase kodierende cDNA wurde aus R. serpentina Zellsuspensionskulturen cloniert und in E. coli exprimiert. Das Enzyme wurde mit Hilfe des Inteintages gereinigt und seine Eigenschaften wurden untersucht, u. a. optimale Temperatur und pH Wert und Substratspezifität.Die Produkte von der enzymatischen Strictosidinhydrolyse wurden als Cathenamin (unter normalen Bedingungen) und Sitsirikin und Isositsirikin (im Gegenwart von Reduktoren) identifiziert. Das neue Indolalkaloid 3-Isocorreantin A wurde nach der enzymatischen Deglucosylierung von Dolichantosid (Nß-Methylstrictosidin) gebildet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die Zinkendopeptidasen Meprin α und β sind Schlüsselkomponenten in patho(physiologischen) Prozessen wie Entzündung, Kollagenassemblierung und Angiogenese. Nach ihrer Entdeckung in murinen Bürstensaummembranen und humanen Darmepithelien, wurden weitere Expressionsorte identifiziert, z.B. Leukozyten, Krebszellen und die humane Haut. Tiermodelle, Zellkulturen und biochemische Analysen weisen auf Funktionen der Meprine in der Epithelialdifferenzierung, Zellmigration, Matrixmodellierung, Angiogenese, Bindegewebsausbildung und immunologische Prozesse hin. Dennoch sind ihre physiologischen Substrate weitgehend noch unbekannt. Massenspektrometrisch basierte Proteomics-Analysen enthüllten eine einzigartige Spaltspezifität für saure Aminosäurereste in der P1´ Position und identifizierten neue biologische Substratkandidaten. Unter den 269 extrazellulären Proteinen, die in einem Substratscreen identifiziert wurden, stellten sich das amyloid precursor protein (APP) and ADAM10 (a disintegrin and metalloprotease 10) als sehr vielversprechende Kandidaten heraus. Mehrere Schnittstellen innerhalb des APP Proteins, hervorgerufen durch verschiedenen Proteasen, haben unterschiedlichen Auswirkungen zur Folge. Die β-Sekretase BACE (β-site APP cleaving enzyme) prozessiert APP an einer Schnittstelle, welche als initialer Schritt in der Entwicklung der Alzheimer Erkrankung gilt. Toxische Aβ (Amyloid β)-Peptide werden in den extrazellulären Raum freigesetzt und aggregieren dort zu senilen Plaques. Membran verankertes Meprin β hat eine β-Sekretase Aktivität, die in einem Zellkultur-basierten System bestätigt werden konnte. Die proteolytische Effizienz von Meprin β wurde in FRET (Fluorescence Resonance Energy Transfer)-Analysen bestimmt und war um den Faktor 104 höher als die von BACE1. Weiterhin konnte gezeigt werden, dass Meprin β die ersten zwei Aminosäuren prozessiert und somit aminoterminal einen Glutamatrest freisetzt, welcher nachfolgend durch die Glutaminylzyklase in ein Pyroglutamat zykliert werden kann. Trunkierte Aβ-Peptide werden nur in Alzheimer Patienten generiert. Aufgrund einer erhöhten Hydrophobie weisen diese Peptide eine höhere Tendenz zur Aggregation auf und somit eine erhöhte Toxizität. Bis heute wurde keine Protease identifiziert, welche diese Schnittstelle prozessiert. Die Bildung der Meprin vermittelten N-terminalen APP Fragmenten wurde in vitro und in vivo detektiert. Diese N-APP Peptide hatten keine cytotoxischen Auswirkungen auf murine und humane Gehirnzellen, obwohl zuvor N-APP als Ligand für den death receptor (DR) 6 identifiziert wurde, der für axonale Degenerationsprozesse verantwortlich ist. rnIm nicht-amyloidogenen Weg prozessiert ADAM10 APP und entlässt die Ektodomäne von der Zellmembran. Wir konnten das ADAM10 Propeptid als Substrat von Meprin β identifizieren und in FRET Analysen, in vitro und in vivo zeigen, dass die Meprin vermittelte Prozessierung zu einer erhöhten ADAM10 Aktivität führt. Darüber hinaus wurde ADAM10 als Sheddase für Meprin β identifiziert. Shedding konnte durch Phorbol 12-myristate 13-acetate (PMA) oder durch das Ionophor A23187 hervorgerufen werden, sowie durch ADAM10 Inhibitoren blockiert werden. rnDiese Arbeit konnte somit ein komplexes proteolytisches Netwerk innerhalb der Neurophysiologie aufdecken, welches für die Entwicklung der Alzheimer Demenz wichtig sein kann.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemotherapeutic SN1‑methylating agents are important anticancer drugs. They induce several covalent modifications in the DNA, from which O6‑methylguanine (O6MeG) is the main toxic lesion. In this work, different hypotheses that have been proposed to explain the mechanism of O6MeG‑triggered cell death were tested. The results of this work support the abortive processing model, which states that abortive post‑replicative processing of O6MeG‑driven mispairs by the DNA mismatch repair (MMR) machinery results in single‑strand gaps in the DNA that, upon a 2nd round of DNA replication, leads to DNA double‑strand break (DSB) formation, checkpoint activation and cell death. In this work, it was shown that O6MeG induces an accumulation of cells in the 2nd G2/M‑phase after treatment. This was accompanied by an increase in DSB formation in the 2nd S/G2/M‑phase, and paralleled by activation of the checkpoint kinases ATR and CHK1. Apoptosis was activated in the 2nd cell cycle. A portion of cells continue proliferating past the 2nd cell cycle, and triggers apoptosis in the subsequent generations. An extension to the original model is proposed, where the persistence of O6MeG in the DNA causes new abortive MMR processing in the 2nd and subsequent generations, where new DSB are produced triggering cell death. Interestingly, removal of O6MeG beyond the 2nd generation lead to a significant, but not complete, reduction in apoptosis, pointing to the involvement of additional mechanisms as a cause of apoptosis. We therefore propose that an increase in genomic instability resulting from accumulation of mis‑repaired DNA damage plays a role in cell death induction. Given the central role of DSB formation in toxicity triggered by chemotherapeutic SN1‑alkylating agents, it was aimed in the second part of this thesis to determine whether inhibition of DSB repair by homologous recombination (HR) or non‑homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioblastoma cells to these agents. The results of this work show that HR down‑regulation in glioblastoma cells impairs the repair of temozolomide (TMZ)‑induced DSB. HR down‑regulation greatly sensitizes cells to cell death following O6‑methylating (TMZ) or O6‑chlorethylating (nimustine) treatment, but not following ionizing radiation. The RNAi mediated inhibition in DSB repair and chemo‑sensitization was proportional to the knockdown of the HR protein RAD51. Chemo‑sensitization was demonstrated for several HR proteins, in glioma cell lines proficient and mutated in p53. Evidence is provided showing that O6MeG is the primary lesion responsible for the increased sensitivity of glioblastoma cells following TMZ treatment, and that inhibition of the resistance marker MGMT restores the chemo‑sensitization achieved by HR down‑regulation. Data are also provided to show that inhibition of DNA‑PK dependent NHEJ does not significantly sensitized glioblastoma cells to TMZ treatment. Finally, the data also show that PARP inhibition with olaparib additionally sensitized HR down‑regulated glioma cells to TMZ. Collectively, the data show that processing of O6MeG through two rounds of DNA replication is required for DSB formation, checkpoint activation and apoptosis induction, and that O6MeG‑triggered apoptosis is also executed in subsequent generations. Furthermore, the data provide proof of principle evidence that down‑regulation of HR is a reasonable strategy for sensitizing glioma cells to killing by O6‑alkylating chemotherapeutics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, elemental research towards the implantation of a diamond-based molecular quantum computer is presented. The approach followed requires linear alignment of endohedral fullerenes on the diamond C(100) surface in the vicinity of subsurface NV-centers. From this, four fundamental experimental challenges arise: 1) The well-controlled deposition of endohedral fullerenes on a diamond surface. 2) The creation of NV-centers in diamond close to the surface. 3) Preparation and characterization of atomically-flat diamondsurfaces. 4) Assembly of linear chains of endohedral fullerenes. First steps to overcome all these challenges were taken in the framework of this thesis. Therefore, a so-called “pulse injection” technique was implemented and tested in a UHV chamber that was custom-designed for this and further tasks. Pulse injection in principle allows for the deposition of molecules from solution onto a substrate and can therefore be used to deposit molecular species that are not stable to sublimation under UHV conditions, such as the endohedral fullerenes needed for a quantum register. Regarding the targeted creation of NV-centers, FIB experiments were carried out in cooperation with the group of Prof. Schmidt-Kaler (AG Quantum, Physics Department, Johannes Gutenberg-Universität Mainz). As an entry into this challenging task, argon cations were implanted into (111) surface-oriented CaF2 crystals. The resulting implantation spots on the surface were imaged and characterized using AFM. In this context, general relations between the impact of the ions on the surface and their valency or kinetic energy, respectively, could be established. The main part of this thesis, however, is constituted by NCAFM studies on both, bare and hydrogen-terminated diamond C(100) surfaces. In cooperation with the group of Prof. Dujardin (Molecular Nanoscience Group, ISMO, Université de Paris XI), clean and atomically-flat diamond surfaces were prepared by exposure of the substrate to a microwave hydrogen plasma. Subsequently, both surface modifications were imaged in high resolution with NC-AFM. In the process, both hydrogen atoms in the unit cell of the hydrogenated surface were resolved individually, which was not achieved in previous STM studies of this surface. The NC-AFM images also reveal, for the first time, atomic-resolution contrast on the clean, insulating diamond surface and provide real-space experimental evidence for a (2×1) surface reconstruction. With regard to the quantum computing concept, high-resolution NC-AFM imaging was also used to study the adsorption and self-assembly potential of two different kinds of fullerenes (C60 and C60F48) on aforementioned diamond surfaces. In case of the hydrogenated surface, particular attention was paid to the influence of charge transfer doping on the fullerene-substrate interaction and the morphology emerging from self-assembly. Finally, self-assembled C60 islands on the hydrogen-terminated diamond surface were subject to active manipulation by an NC-AFM tip. Two different kinds of tip-induced island growth modes have been induced and were presented. In conclusion, the results obtained provide fundamental informations mandatory for the realization of a molecular quantum computer. In the process it was shown that NC-AFM is, under proper circumstances, a very capable tool for imaging diamond surfaces with highest resolution, surpassing even what has been achieved with STM up to now. Particular attention was paid to the influence of transfer doping on the morphology of fullerenes on the hydrogenated diamond surface, revealing new possibilities for tailoring the self-assembly of molecules that have a high electron affinity.