13 resultados para Metal nanoparticles
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this manner should be connected to a two-photon processes triggered by these structures; obtaining first insight into plasmon-mediated enhancement phenomena. An even simpler and faster approach to produce plasmonic structures than that for the crescents was tested. Metallic nanodiscs and nanoellipses were produced by means of nanosphere lithography, extending a procedure reported in the literature to new shapes and optical properties. The optical properties of these particles were characterized by extinction spectroscopy and compared to results from the literature. Their major advantage is that they present a polarization-dependent response, like the nanocrescents, but are much simpler to fabricate, and the resonances can be tailored in the visible with relative ease. The sensing capabilities of the metallic nanodiscs were explored in the same manner as for the nanocrescents, meaning their response to thin layers and to bio-recognition events on their surface. The sensitivity of these nanostructures to thin films proved to be lower than that of the crescents, though in the same order of magnitude. Experimental information about the near field extension for the Au nanodiscs of different sizes was also extracted from these measurements. Further resonance-tailoring approaches based on electrochemical deposition of metals on the nanodiscs were explored, as a means of modifying plasmon resonances by changing surface properties of the nanoparticles. First results on these experiments would indicate that the deposition of Ag on Au on a submonolayer coverage level can lead to important blue-shifts in the resonances, which would open a simple way to tailor resonances by changing material properties in a local manner.
Resumo:
Plasmons in metal nanoparticles respond to changes in their local environment by a spectral shift in resonance. Here, the potential of plasmonic metal nanoparticles for label-free detection and observation of biological systems is presented. Comparing the material silver and gold concerning plasmonic sensitivity, silver nanoparticles exhibit a higher sensitivity but their chemical instability under light exposure limits general usage. A new approach combining results from optical dark-field microscopy and transmission electron microscopy allows localization and quantification of gold nanoparticles internalized into living cells. Nanorods exposing a negatively charged biocompatible polymer seem to be promising candidates to sense membrane fluctuations of adherent cells. Many small nanoparticles being specific sensing elements can build up a sensor for parallel analyte detection without need of labeling, which is easy to fabricate, re-usable, and has sensitivity down to nanomolar concentrations. Besides analyte detection, binding kinetics of various partner proteins interacting with one protein of interest are accessible in parallel. Gold nanoparticles are able to sense local oscillations in the surface density of proteins on a lipid bilayer, which could not be resolved so far. Studies on the fluorescently labeled system and the unlabeled system identify an influence of the label on the kinetics.
Resumo:
Heusler Materialien wurden bisher vor allem in Volumen- und Dünnfilmproben aufgrund ihrer technischen Bedeutung untersucht. In dieser Arbeit berichtet über die experimentellen Untersuchungen der chemischen Synthese, Struktur, und der magnetischen Eigenschaften von ternären Heusler-Nanopartikeln. Die grundlegenden Aspekte der Physik, Chemie und Materialwissenschaft bezüglich der Heusler Nanopartiikel wurden untersucht. Außerdem wurde eine silicatgestützte Herstellungsmethode für Karbon-ummantelte, ternäre intermetallische Co2FeGa Nanopartikel entwickelt. Die Bildung der L21 Co2FeGa Phase wurde mit Röntgenbeugung (XRD), Extended X-ray Absorption Fine Structure Spektroskopie (EXAFS), und 57Fe Mössbauer Spektroskopie bestätigt. Die Abhängigkeit der Phase und der der Größe der Co2FeGa Nanopartikel vom der Zusammensetzung der Precursor und des Silicats wurden untersucht. Durch das Koppeln der aus Transmissions-Elektronen-Mikroskopie (TEM) gewonnen Teilchengröße und der Mössbauerspektroskopie konnte die kritische Größe für den Übergang von superparamgnetischem zu ferromagnetischem Verhalten von Co2FeGa Nanopartikel ermittelt werden. Die silicatgestützte chemische Synthese von Co2FeGa Nanopartikeln besitzt großes Potential für eine generelle Herstellungsmethode für Co-basierte Heuser Nanopartikel. Des weiteren wurde auch eine chemische Herstellungsmethode von metallischen Nanopartikeln mit Synchrotronstrahlung untersucht, die so gewonnen Nanopartikel sind vielversprechende Materialien für die Nanobiotechnologie und die Nanomedizin.
Resumo:
The work presented in this doctoral thesis is a facile procedure, thermal decomposition, forrnthe synthesis of different types of monodisperse heterodimer M@iron oxide (M= Cu, Co, Nirnand Pt) and single ferrites, MFe2O4 (M= Cu and Co), nanoparticles. In the following chapter,rnwe study the synthesis of these monodiperse nanoparticles with the similar iron precursorrn(iron pentacarbonyl) and different transition metal precursors such as metalrnacetate/acetylacetonate/formate precursors in the presence of various surfactants and solvents.rnAccording to their decomposition temperatures and reducing condition, a specific and suitablernroute was designed for the formation of Metal@Metal oxide or MFe2O4 nanoparticlesrn(Metal/M=transition metal).rnOne of the key purposes in the formation of nanocrystals is the development of syntheticrnpathways for designing and controlling the composition, shape and size of predictedrnnanostructures. The ability to arrange different nanosized domains of metallic and magneticrnmaterials into a single heterodimer nanostructure offers an interesting direction to engineerrnthem with multiple functionalities or enhanced properties of one domain. The presence andrnrole of surfactants and solvents in these reactions result in a variety of nanocrystal shapes. Therncrystalline phase, the growth rate and the orientation of growth parameters along certainrndirections of these structures can be chemically modulated by using suitable surfactants. In allrnnovel reported heterodimer nanostructures in this thesis, initially metals were preformed andrnthen by the injection of iron precursor in appropriate temperature, iron oxide nanoparticlesrnwere started to nucleate on the top or over the surfaces of metal nanoparticles. Ternary phasesrnof spherical CuxFe3-xO4 and CoFe2O4 ferrites nanoparticles were designed to synthesis just byrnlittle difference in diffusion step with the formation of mentioned phase separated heterodimerrnnanoparticles. In order to use these magnetic nanoparticles in biomedical and catalysisrnapplications, they should be transferred into the water phase solution, therefore they werernfunctionalized by a multifunctional polymeric ligand. These functionalized nanoparticles werernstable against aggregation and precipitation in aqueous media for a long time. Magneticrnresonance imaging and catalytic reactivities are two promising applications which have beenrnutilized for these magnetic nanoparticles in this thesis.rnThis synthetic method explained in the following chapters can be extended to the synthesis ofrnother heterostructured nanomaterials such as Ni@MnO or M@M@iron oxide (M=transitionrnmetal) or to use these multidomain particles as building blocks for higher order structures.
Resumo:
Plasmonische Metallnanopartikel bündeln, verstärken und beeinflussen Licht auf nanoskopischer Ebene. Diese grundlegende Eigenschaft kommt von koheränten, kollektiven Schwingungen der Leitungsbandelektronen, die von einfallendem Licht resonant angeregt und lokalisierte Oberflächenplasmonenresonanz (LSPR) oder ‚Partikelplasmonen‘ genannt werden. Plasmonen in Metallnanopartikeln wurden bisher z.B. zur Erkennen von pathogenen Biomolekülen, bei der photothermischen Therapie und zur Verbesserung der Effizienz von Solarzellen verwendet. In dieser Arbeit werde ich meinen Fokus auf die Synthese und Funktionalisierung von Goldnanopartikeln zur Anwendung als Sensoren legen.rnrnKürzliche Verbesserungen in der nasschemischen Synthese haben zur Herstellung von Goldnanopartikel mit unterschiedlichen Formen und Größen geführt, die sich in ihren Sensoreigenschaften unterscheiden. Unter den unterschiedlichen Sensorgeometrien sind Goldnanostäbchen die bevorzugte Form zur Biomolekül-Sensorik durch LSPR. Nanostäbchen werden durch eine positiv geladene CTAB-Schicht stabilisiert, die Proteine bei neutralem pH-Wert anziehen kann. Die Adsorption und Desorption von Proteinen an der Nanopartikeloberfläche und damit die Bindungskinetiken von Proteinen kann auf Einzelmolekülebene erforscht werden. Ich zeige hier eine Studie mit hoher örtlicher und zeitlicher Auflösung um einzelne Bindungsereignisse von Fibronectin auf Goldnanostäbchen darzustellen.rnrnGoldnanostäbchen müssen mit spezifischen biologischen Erkennungselementen funktionalisiert werden um eine Analyterkennung oder Proteinwechselwirkung zu erreichen. Ich funktionalisiere Goldnanostäbchen mit kurzen DNA-Sequenzen (Aptamer-Sequenzen und NTA konjugierten Polihymidinen) und habe anhand diese unterschiedlich sensitiven Partikel eine Studie mit verschiedenen Analyten (oder Protein-Protein Wechselwirkungen) erfolgreich durchgeführt.rn rnPlasmonen von Nanopartikel-Clustern koppeln miteinander, was ihre Resonanzenergie ändert. Der kontrollierte Zusammenbau von Nanopartikeln zu Dimeren oder höher geordneten Strukturen wie ‚Core-Satellites‘ können dazu dienen ihre Sensitivität zu erhöhen. Diese Cluster bieten eine hohe Sensitivität auf Grund der Anwesenheit von plasmonischen Hotspots in der Lücke zwischen zwei Partikeln. Die Plasmonkopplung ist ein Phänomen, das abhängig vom Abstand zweier Partikel zueinander ist und bildet somit die Basis von sogenannten Plasmon-Linealen. Ich habe eine Strategie entwickelt um Dimere aus Hsp90 funktionalisierten Goldnanosphären zu bilden. Diese Technik wird nicht durch Ausbleichen oder das Blinken von Farbstoffen limitiert und ich zeige zum ersten Mal wie man dadurch dynamische Proteinkonformationen untersuchen kann.rn
Resumo:
The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.
Resumo:
This thesis focuses on the controlled assembly of monodisperse polymer colloids into ordered two-dimensional arrangements. These assemblies, commonly referred to as colloidal monolayers, are subsequently used as masks for the generation of arrays of complex metal nanostructures on solid substrates.rnThe motivation of the research presented here is twofold. First, monolayer crystallization methods were developed to simplify the assembly of colloids and to produce more complex arrangements of colloids in a precise way. Second, various approaches to colloidal lithography are designed with the aim to include novel features or functions to arrays of metal nanostructures.rnThe air/water interface was exploited for the crystallization of colloidal monolayer architectures as it combines a two-dimensional confinement with a high lateral mobility of the colloids that is beneficial for the creation of high long range order. A direct assembly of colloids is presented that provides a cheap, fast and conceptually simple methodology for the preparation of ordered colloidal monolayers. The produced two-dimensional crystals can be transformed into non-close-packed architectures by a plasma-induced size reduction step, thus providing valuable masks for more sophisticated lithographic processes. Finally, the controlled co-assembly of binary colloidal crystals with defined stoichiometries on a Langmuir trough is introduced and characterized with respect to accessible configurations and size ratios. rnSeveral approaches to lithography are presented that aim at introducing different features to colloidal lithography. First, using metal-complex containing latex particles, the synthesis of which is described as well, symmetric arrays of metal nanoparticles can be created by controlled combustion of the organic material of the colloids. The process does not feature an inherent limit in nanoparticle size and is able to produce complex materials as will be demonstrated for FePt alloy particles. Precise control over both size and spacing of the particle array is presented. rnSecond, two lithographic processes are introduced to create sophisticated nanoparticle dimer units consisting of two crescent shaped nanostructures in close proximity; essentially by using a single colloid as mask to generate two structures simultaneously. Strong coupling processes of the parental plasmon resonances of the two objects are observed that are accompanied by high near-field enhancements. A plasmon hybridization model is elaborated to explain all polarization dependent shifts of the resonance positions. Last, a technique to produce laterally patterned, ultra-flat substrates without surface topographies by embedding gold nanoparticles in a silicon dioxide matrix is applied to construct robust and re-usable sensing architectures and to introduce an approach for the nanoscale patterning of solid supported lipid bilayer membranes. rn
Resumo:
Diese Arbeit befasst sich mit den optischen Resonanzen metallischer Nanopartikel im Abstand weniger Nanometer von einer metallischen Grenzfläche. Die elektromagnetische Wechselwirkung dieser „Kugel-vor-Fläche“ Geometrie ruft interessante optische Phänomene hervor. Sie erzeugt eine spezielle elektromagnetische Eigenmode, auch Spaltmode genannt, die im Wesentlichen auf den Nanospalt zwi-schen Kugel und Oberfläche lokalisiert ist. In der quasistatischen Näherung hängt die Resonanzposition nur vom Material, der Umgebung, dem Film-Kugel Abstand und dem Kugelradius selbst ab. Theoretische Berechnungen sagen für diese Region unter Resonanzbedingungen eine große Verstärkung des elektro-magnetischen Feldes voraus. rnUm die optischen Eigenschaften dieser Systeme zu untersuchen, wurde ein effizienter plasmonenver-mittelnder Dunkelfeldmodus für die konfokale Rastermikroskopie durch dünne Metallfilme entwickelt, der die Verstärkung durch Oberflächenplasmonen sowohl im Anregungs- als auch Emissionsprozess ausnutzt. Dadurch sind hochwertige Dunkelfeldaufnahmen durch die Metallfilme der Kugel-vor-Fläche Systeme garantiert, und die Spektroskopie einzelner Resonatoren wird erleichtert. Die optischen Untersuchungen werden durch eine Kombination von Rasterkraft- und Rasterelektronenmikroskopie vervollständigt, so dass die Form und Größe der untersuchten Resonatoren in allen drei Dimensionen bestimmt und mit den optischen Resonanzen korreliert werden können. Die Leistungsfähigkeit des neu entwickelten Modus wird für ein Referenzsystem aus Polystyrol-Kugeln auf einem Goldfilm demonstriert. Hierbei zeigen Partikel gleicher Größe auch die erwartete identische Resonanz.rnFür ein aus Gold bestehendes Kugel-vor-Fläche System, bei dem der Spalt durch eine selbstorganisierte Monolage von 2-Aminoethanthiol erzeugt wird, werden die Resonanzen von Goldpartikeln, die durch Reduktion mit Chlorgoldsäure erzeugt wurden, mit denen von idealen Goldkugeln verglichen. Diese ent-stehen aus den herkömmlichen Goldpartikeln durch zusätzliche Bestrahlung mit einem Pikosekunden Nd:Yag Laser. Bei den unbestrahlten Partikeln mit ihrer Unzahl an verschiedenen Formen zeigen nur ein Drittel der untersuchten Resonatoren ein Verhalten, das von der Theorie vorhergesagt wird, ohne das dies mit ihrer Form oder Größe korrelieren würde. Im Fall der bestrahlten Goldkugeln tritt eine spürbare Verbesserung ein, bei dem alle Resonatoren mit den theoretischen Rechnungen übereinstimmen. Eine Änderung der Oberflächenrauheit des Films zeigt hingegen keinen Einfluß auf die Resonanzen. Obwohl durch die Kombination von Goldkugeln und sehr glatten Metallfilmen eine sehr definierte Probengeometrie geschaffen wurde, sind die experimentell bestimmten Linienbreiten der Resonanzen immer noch wesentlich größer als die berechneten. Die Streuung der Daten, selbst für diese Proben, deutet auf weitere Faktoren hin, die die Spaltmoden beeinflußen, wie z.B. die genaue Form des Spalts. rnDie mit den Nanospalten verbundenen hohen Feldverstärkungen werden untersucht, indem ein mit Farbstoff beladenes Polyphenylen-Dendrimer in den Spalt eines aus Silber bestehenden Kugel-vor-Fläche Systems gebracht wird. Das Dendrimer in der Schale besteht lediglich aus Phenyl-Phenyl Bindungen und garantiert durch die damit einhergende Starrheit des Moleküls eine überragende Formstabiliät, ohne gleichzeitig optisch aktiv zu sein. Die 16 Dithiolan Endgruppen sorgen gleichzeitig für die notwendige Affinität zum Silber. Dadurch kann der im Inneren befindliche Farbstoff mit einer Präzision von wenigen Nanometern im Spalt zwischen den Metallstrukturen platziert werden. Der gewählte Perylen Farbstoff zeichnet sich wiederum durch hohe Photostabilität und Fluoreszenz-Quantenausbeute aus. Für alle untersuchten Partikel wird ein starkes Fluoreszenzsignal gefunden, das mindestens 1000-mal stärker ist, als das des mit Farbstoff überzogenen Metallfilms. Das Profil des Fluoreszenz-Anregungsspektrums variiert zwischen den Partikeln und zeigt im Vergleich zum freien Farbstoff eine zusätzliche Emission bei höheren Frequenzen, was in der Literatur als „hot luminescence“ bezeichnet wird. Bei der Untersuchung des Streuverhaltens der Resonatoren können wieder zwei unterschiedliche Arten von Resonatoren un-terschieden werden. Es gibt zunächst die Fälle, die bis auf die beschriebene Linienverbreiterung mit einer idealen Kugel-vor-Fläche Geometrie übereinstimmen und dann andere, die davon stark abweichen. Die Veränderungen der Fluoreszenz-Anregungsspektren für den gebundenen Farbstoffs weisen auf physikalische Mechanismen hin, die bei diesen kleinen Metall/Farbstoff Abständen eine Rolle spielen und die über eine einfache wellenlängenabhängige Verstärkung hinausgehen.
Resumo:
Here, we present the adaptation and optimization of (i) the solvothermal and (ii) the metal-organic chemical vapor deposition (MOCVD) approach as simple methods for the high-yield synthesis of MQ2 (M=Mo, W, Zr; Q = O, S) nanoparticles. Extensive characterization was carried out using X-ray diffraction (XRD), scanning and transmission electron micros¬copy (SEM/TEM) combined with energy dispersive X-ray analysis (EDXA), Raman spectroscopy, thermal analyses (DTA/TG), small angle X-ray scattering (SAXS) and BET measurements. After a general introduction to the state of the art, a simple route to nanostructured MoS2 based on the decomposition of the cluster-based precursor (NH4)2Mo3S13∙xH2O under solvothermal conditions (toluene, 653 K) is presented. Solvothermal decomposition results in nanostructured material that is distinct from the material obtained by decomposition of the same precursor in sealed quartz tubes at the same temperature. When carried out in the presence of the surfactant cetyltrimethyl¬ammonium bromide (CTAB), the decomposition product exhibits highly disordered MoS2 lamellae with high surface areas. The synthesis of WS2 onion-like nanoparticles by means of a single-step MOCVD process is discussed. Furthermore, the results of the successful transfer of the two-step MO¬CVD based synthesis of MoQ2 nanoparticles (Q = S, Se), comprising the formation of amorphous precursor particles and followed by the formation of fullerene-like particles in a subsequent annealing step to the W-S system, are presented. Based on a study of the temperature dependence of the reactions a set of conditions for the formation of onion-like structures in a one-step reaction could be derived. The MOCVD approach allows a selective synthesis of open and filled fullerene-like chalcogenide nanoparticles. An in situ heating stage transmission electron microscopy (TEM) study was employed to comparatively investigate the growth mechanism of MoS2 and WS2 nanoparticles obtained from MOCVD upon annealing. Round, mainly amorphous particles in the pristine sample trans¬form to hollow onion-like particles upon annealing. A significant difference between both compounds could be demonstrated in their crystallization conduct. Finally, the results of the in situ hea¬ting experiments are compared to those obtained from an ex situ annealing process under Ar. Eventually, a low temperature synthesis of monodisperse ZrO2 nanoparticles with diameters of ~ 8 nm is introduced. Whereas the solvent could be omitted, the synthesis in an autoclave is crucial for gaining nano-sized (n) ZrO2 by thermal decomposition of Zr(C2O4)2. The n-ZrO2 particles exhibits high specific surface areas (up to 385 m2/g) which make them promising candidates as catalysts and catalyst supports. Co-existence of m- and t-ZrO2 nano-particles of 6-9 nm in diameter, i.e. above the critical particle size of 6 nm, demonstrates that the particle size is not the only factor for stabilization of the t-ZrO2 modification at room temperature. In conclusion, synthesis within an autoclave (with and without solvent) and the MOCVD process could be successfully adapted to the synthesis of MoS2, WS2 and ZrO2 nanoparticles. A comparative in situ heating stage TEM study elucidated the growth mechanism of MoS2 and WS2 fullerene-like particles. As the general processes are similar, a transfer of this synthesis approach to other layered transition metal chalcogenide systems is to be expected. Application of the obtained nanomaterials as lubricants (MoS2, WS2) or as dental filling materials (ZrO2) is currently under investigation.
Resumo:
We report on a strategy to prepare metal oxides including binary oxide and mixed metal oxide (MMO) in form of nanometer-sized particles using polymer as precursor. Zinc oxide nanoparticles are prepared as an example. The obtained zinc polyacrylate precursor is amorphous as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The conversion from polymer precursor to ZnO nanocrystals by thermal pyrolysis was investigated by means of XRD, thermogravimetric analysis (TGA) and electron microscopy. The as-synthesized ZnO consists of many individual particles with a diameter around 40 nm as shown by scanning electron microscopy (SEM). The photoluminescence (PL) and electron paramagnetic (EPR) properties of the material are investigated, too. Employing this method, ZnO nanocrystalline films are fabricated via pyrolysis of a zinc polyacrylate precursor film on solid substrate like silicon and quartz glass. The results of XRD, absorption spectra as well as TEM prove that both the ZnO nanopowder and film undergo same evolution process. Comparing the PL properties of films fabricated in different gas atmosphere, it is assigned that the blue emission of the ZnO films is due to crystal defect of zinc vacancy and green emission from oxygen vacancy. Two kinds of ZnO-based mixed metal oxide (Zn1-xMgxO and Zn1-xCoxO) particles with very precise stoichiometry are prepared by controlled pyrolysis of the corresponding polymer precursor at 550 oC. The MMO crystal particles are typically 20-50 nm in diameter. Doping of Mg in ZnO lattice causes shrinkage of lattice parameter c, while it remains unchanged with Co incorporation. Effects of bandgap engineering are seen in the Mg:ZnO system. The photoluminescence in the visible is enhanced by incorporation of magnesium on zinc lattice sites, while the emission is suppressed in the Co:ZnO system. Magnetic property of cobalt doped-ZnO is checked too and ferromagnetic ordering was not found in our samples. An alternative way to prepare zinc oxide nanoparticles is presented upon calcination of zinc-loaded polymer precursors, which is synthesized via inverse miniemulsion polymerization of the mixture of the acrylic acid and zinc nitrate. The as-prepared ZnO product is compared with that obtained from polymer-salt complex method. The obtained ZnO nanoparticles undergo surface modification via a phosphate modifier applying ultrasonication. The morphology of the modified particles is checked by SEM. And stability of the ZnO nanoparticles in aqueous dispersion is enhanced as indicated by the zeta-potential results.
Resumo:
In this thesis, three nitroxide based ionic systems were used to investigate structure and dynamics of their respective solutions in mixed solvents by means of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy at X- and W-band (9.5 and 94.5 GHz, respectively). rnFirst, the solvation of the inorganic radical Fremy’s salt (K2ON(SO3)2) in isotope substituted binary solvent mixtures (methanol/water) was investigated by means of high-field (W-band) pulse ENDOR spectroscopy and molecular dynamics (MD) simulations. From the analysis of orientation-selective 1H and 2H ENDOR spectra the principal components of the hyperfine coupling (hfc) tensor for chemically different protons (alcoholic methyl vs. exchangeable protons) were obtained. The methyl protons of the organic solvent approach with a mean distance of 3.5 Å perpendicular to the approximate plane spanned by ON(S)2 of the probe molecule. Exchangeable protons were found to be distributed isotropically, approaching closest to Fremy’s salt from the hydrogen-bonded network around the sulfonate groups. The distribution of exchangeable and methyl protons as found in MD simulations is in full agreement with the ENDOR results. The solvation was found to be similar for the studied solvent ratios between 1:2.3 and 2.3:1 and dominated by an interplay of H-bond (electrostatic) interactions and steric considerations with the NO group merely involved into H-bonds.rnFurther, the conformation of spin labeled poly(diallyldimethylammonium chloride) (PDADMAC) solutions in aqueous alcohol (methanol, ethanol, n-propanol, ethylene glycol, glycerol) mixtures in dependence of divalent sodium sulfate was investigated with double electron-electron resonance (DEER) spectroscopy. The DEER data was analyzed using the worm-like chain model which suggests that in organic-water solvent mixtures the polymer backbones are preferentially solvated by the organic solvent. We found a less serve impact on conformational changes due to salt than usually predicted in polyelectrolyte theory which stresses the importance of a delicate balance of hydrophobic and electrostatic interactions, in particular in the presence of organic solvents.rnFinally, the structure and dynamics of miniemulsions and polymerdispersions prepared with anionic surfactants, that were partially replaced by a spin labeled fatty acid in presence and absence of a lanthanide beta-diketonate complex was characterized by CW EPR spectroscopy. Such miniemulsions form multilayers with the surfactant head group bound to the lanthanide ion. Beta-diketonates were formerly used as NMR shift reagents and nowadays find application as luminescent materials in OLEDs and LCDs and as contrast agent in MRT. The embedding of the complex into a polymer matrix results in an easy processable material. It was found that the structure formation takes place in miniemulsion and is preserved during polymerization. For surfactants with carboxyl-head group a higher order of the alkyl chains and less lateral diffusion is found than for sulfat-head groups, suggesting a more uniform and stronger coordination to the metal ion. The stability of these bilayers depends on the temperature and the used surfactant which should be considered for the used polymerization temperature if a maximum output of the structured regions is wished.
Resumo:
Metallische Nanopartikel und ihre Oxide (z.B. ZnO NP, TiO2 NP und Fe2O3 NP) werden aufgrund ihrer chemischen und physikalischen Eigenschaften häufig als Additive in der Reifenproduktion, in Katalysatoren, Lebensmitteln, Arzneimitteln und Kosmetikprodukten verwendet. Künftig wird ein kontinuierlicher Anstieg der industriellen Anwendung (~ 1663 Tonnen im Jahr 2025) mit gesteigerter Freisetzung in die Umwelt erwartet, was zwangsläufig zu einer vermehrten Aufnahme über das respiratorische Epithel führt. Metalldampffieber ist als gesundheitsschädigender Effekt von Metalloxid-haltigen Aerosolen (z.B. ZnO) nach Inhalation bekannt. Immunreaktionen, wie beispielsweise Entzündungen, werden häufig mit der Entstehung von Sauerstoffradikalen (ROS) in Verbindung gebracht, die wiederum zu DNA-Schäden führen können. Drei mögliche Ursachen der Genotoxität werden angenommen: direkte Interaktion von Nanopartikeln mit intrazellulären Strukturen, Interaktion von Ionen dissoziierter Partikel mit intrazellulären Strukturen sowie die Entstehung von ROS initiiert durch Partikel oder Ionen.rnDie vorliegende Studie befasst sich mit den Mechanismen der Genotoxizität von ZnO Nanopartikeln (ZnO NP), als Beispiel für metallische Nanopartikel, im respiratorischen Epithel. In der Studie wurde gezielt die intrazelluläre Aufnahme und Verteilung von ZnO NP, deren Toxizität, deren DNA schädigendes Potential sowie die Aktivierung der DNA damage response (DDR) analysiert.rnEs konnten kaum internalisierte ZnO NP mittels TEM detektiert werden. Innerhalb der ersten Sekunden nach Behandlung mit ZnO NP wurde spektrofluorometrisch ein starker Anstieg der intrazellulären Zn2+ Konzentration gemessen. In unbehandelten Zellen war Zn2+ in granulären Strukturen lokalisiert. Die Behandlung mit ZnO NP führte zu einer Akkumulation von Zn2+ in diesen Strukturen. Im zeitlichen Verlauf verlagerten sich die Zn2+-Ionen in das Zytoplasma, sowie in Zellkerne und Mitochondrien. Es wurde keine Kolokalisation von Zn2+ mit den frühen Endosomen und dem endoplasmatischen Retikulum beobachtet. Die Vorbehandlung der Zellen mit Diethylen-triaminpentaessigsäure (DTPA), als extrazellulärem Komplexbildner, verhinderte den intrazellulären Anstieg von Zn2+ nach Behandlung mit den Partikeln.rnDie Behandlung mit ZnO NP resultierte in einer zeit- und dosisabhängigen Reduktion der zellulären Viabilität, während die intrazelluläre ROS-Konzentrationen in den ersten 30 min leicht und anschließend kontinuierlich bis zum Ende der Messung anstiegen. Außerdem verringerte sich das mitochondriale Membranpotential, während sich die Anzahl der frühapoptotischen Zellen in einer zeitabhängigen Weise erhöhte. rnDNA Doppelstrangbrüche (DNA DSB) wurden mittels Immunfluoreszenz-Färbung der γH2A.X foci sichtbar gemacht und konnten nach Behandlung mit ZnO NP detektiert werden. Die Vorbehandlung mit dem Radikalfänger N-Acetyl-L-Cytein (NAC) resultierte in stark reduzierten intrazellulären ROS-Konzentrationen sowie wenigen DNA DSB. Die DNA Schädigung wurde durch Vorbehandlung mit DTPA ganz verhindert.rnDie Aktivierung der DDR wurde durch die Analyse von ATM, ATR, Chk1, Chk2, p53 und p21 mittels Western Blot und ELISA nach Behandlung mit ZnO NP überprüft. Der ATR/Chk1 Signalweg wurde durch ZnO NP nicht aktiviert. Die Komplexierung von Zn2+ resultierte in einer verminderten ATM/Chk2 Signalwegaktivierung. Es zeigte sich, dass das Abfangen von ROS keinen Effekt auf die ATM/Chk2 Signalwegaktivierung hatte.rnZusammengefasst wurde festgestellt, dass die Exposition mit ZnO NP in der Entstehung von ROS, reduzierter Viabilität und vermindertem mitochondrialem Membranpotential resultiert, sowie zeitabhängig eine frühe Apoptose initiiert. ZnO NP dissoziierten extrazellulär und wurden schnell als Zn2+ über unbekannte Mechanismen internalisiert. Die Zn2+-Ionen wurden im Zytoplasma, sowie besonders in den Mitochondrien und dem Zellkern, akkumuliert. Die DDR Signalgebung wurde durch ZnO NP aktiviert, jedoch nicht durch NAC inhibiert. Es wurde gezeigt, dass DTPA die DDR Aktivierung komplett inhibierte. Die Behandlung mit ZnO NP induzierte DNA DSB. Die Inhibition von ROS reduzierte die DNA DSB und die Komplexierung der Zn2+ verhinderte die Entstehung von DNA DSB.rnDiese Daten sprechen für die Dissoziation der Partikel und die hierbei freigesetzten Zn2+ als Hauptmediator der Genotoxizität metallischer Nanopartikel. rn