9 resultados para Measurement Campaign
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Global observations of the chemical composition of the atmosphere are essential for understanding and studying the present and future state of the earth's atmosphere. However, by analyzing field experiments the consideration of the atmospheric motion is indispensable, because transport enables different chemical species, with different local natural and anthropogenic sources, to interact chemically and so consequently influences the chemical composition of the atmosphere. The distance over which that transport occurs is highly dependent upon meteorological conditions (e.g., wind speed, precipitation) and the properties of chemical species itself (e.g., solubility, reactivity). This interaction between chemistry and dynamics makes the study of atmospheric chemistry both difficult and challenging, and also demonstrates the relevance of including the atmospheric motions in that context. In this doctoral thesis the large-scale transport of air over the eastern Mediterranean region during summer 2001, with a focus on August during the Mediterranean Intensive Oxidant Study (MINOS) measurement campaign, was investigated from a lagrangian perspective. Analysis of back trajectories demonstrated transport of polluted air masses from western and eastern Europe in the boundary layer, from the North Atlantic/North American area in the middle end upper troposphere and additionally from South Asia in the upper troposphere towards the eastern Mediterranean. Investigation of air mass transport near the tropopause indicated enhanced cross-tropopause transport relative to the surrounding area over the eastern Mediterranean region in summer. A large band of air mass transport across the dynamical tropopause develops in June, and is shifted toward higher latitudes in July and August. This shifting is associated with the development and the intensification of the Arabian and South Asian upper-level anticyclones and consequential with areas of maximum clear-air turbulence, hypothesizing quasi-permanent areas with turbulent mixing of tropospheric and stratospheric air during summer over the eastern Mediterranean as a result of large-scale synoptic circulation. In context with the latex knowledge about the transport of polluted air masses towards the Mediterranean and with increasing emissions, especially in developing countries like India, this likely gains in importance.
Resumo:
Für die vorliegende Arbeit wurde die chemische Zusammensetzung von natürlichen und anthropogenen Aerosolpartikeln untersucht. Zu diesem Zweck wurde das Aerosolmassenspektrometer (AMS) der Firma Aerodyne, Inc. eingesetzt, womit neben den chemischen Substanzen auch die Massengrößenverteilungen der einzelnen Komponenten der Aerosolpartikel in einem Größenbereich zwischen 20 und 1500 nm quantitativ gemessen werden können. Im Rahmen der HAZE2002-Messkampagne am Meteorologischen Observatorium Hohenpeißenberg wurden die Aerosolpartikel aus natürlichen Quellen untersucht. Diese Partikel bestanden aus Sulfat, Nitrat, Ammonium und organischen Komponenten (Organics). Sulfat, Nitrat und Ammonium wiesen den gleichen Durchmesser auf, was auf eine interne Mischung dieser drei chemischen Substanzen in den Partikeln hinwies. Die Organics hatten einen kleineren Durchmesser, was auf jüngere Partikel hindeutete. Die Analyse der organischen Substanzen in den Aerosolpartikeln zeigte, dass diese zu einem großen Teil aus oxidierten Kohlenwasserstoffen bestanden, die während den Nachmittagsstunden gebildet wurden. Die thermische Abhängigkeit der Bildung von Ammoniumnitrat konnte sowohl gemessen als auch mit Hilfe Konzentrationsberechnungen nach [Seinfeld und Pandis, 1998] nachvollzogen werden. Die gemessene Partikelneubildung konnte auf die ternäre Nukleation aus H2SO4/H2O/NH3 zurückgeführt werden. Aerosolpartikel aus anthropogenen Quellen, wie z.B. der motorischen Verbrennung, wurden während der Messungen in Zusammenarbeit mit dem Ford Forschungszentrum in Aachen (FFA) untersucht. Nukleationspartikel (D 45 nm) konnten bei Experimenten auf dem Rollenprüfstand nur bei einer ausreichend hohen Verdünnung, einem hohen Schwefelgehalt im Kraftstoff und einem hohen Lastzustand nachgewiesen werden. Die Messungen an der Autobahn A4 ergaben eine bimodale Massengrößenverteilung der organischen Partikel, wobei die erste Mode Partikeln aus der motorischen Verbrennungen zugeschrieben werden konnte. Aufgrund der guten Charakterisierung stellt das AMS ein vielseitig einsetzbares Aerosolmessgerät dar, welches in einer hohen Zeitauflösung eine quantitative, größenaufgelöste chemische Analyse der zu messenden Aerosolpartikel bereitstellt.
Resumo:
Atmosphärische Aerosole beeinflussen den Strahlungshaushalt und damit das Klima der Erde. Dies geschieht sowohl direkt (Streuung und Absorption), als auch indirekt (Wolkenkondensationskeime). Das sekundäre organische Aerosol (SOA) bildet einen wichtigen Bestandteil des atmosphärischen Aerosols. Seine Bildung erfolgt durch Reaktionen von Kohlenwasserstoffen mit atmosphärischen Oxidationsmitteln (z.B. Ozon, OH-Radikalen). Eine Klasse dieser Kohlenwasserstoffe sind die Terpene. Sie werden in großen Mengen durch die Vegetation emittiert und gelten als wichtige Vorläufersubstanzen des biogenen SOAs. In den Reaktionen von Monoterpenen und Sesquiterpenen mit atmosphärischen Reaktionspartnern wird eine große Vielfalt an multifunktionellen Reaktionsprodukten gebildet, von denen bis heute nur ein Bruchteil identifiziert werden konnte. In der vorliegenden Arbeit soll im Speziellen die Bildung von organischen Peroxiden und oligomeren Verbindungen im biogenen SOA untersucht und Nachweise einzelner Moleküle erbracht werden.rnFür eine Identifizierung von organischen Peroxiden aus der Oxidation einzelner Monoterpene und Sesquiterpene mit Ozon wurden die Reaktionsprodukte direkt in eine bei Atmosphärendruck arbeitende chemische Ionisationsquelle überführt und massenspektrometrisch untersucht (online-APCI-MS). Hierdurch konnten organische Hydroperoxide in der Partikelphase nachgewiesen werden, welche sich durch eine signifikante Abspaltung von H2O2 im Tandem-Massenspektrum (MS/MS) auszeichneten. Des Weiteren sollte die Bildung von höhermolekularen Verbindungen („Dimere“) im SOA des α-Pinens untersucht werden. Hierfür wurden zunächst die Reaktionsprodukte des Cyclohexens, das als einfache Modellverbindung des α-Pinens dient, mittels online-APCI-MS und offline durch Flüssigkeitschromatographie und Elektrospray-Ionenfallenmassenspektrometrie (HPLC/ESI-MS) untersucht. Verschiedene Produkte der Cyclohexen-Ozonolyse konnten hierbei als Esterverbindungen identifiziert werden, wobei eigens synthetisierte Referenzsubstanzen für die Identifizierung verwendet wurden. In einem weiteren Experiment, indem gleichzeitig Cyclohexen und α-Pinen mit Ozon umgesetzt wurden, konnten ebenfalls eine Bildung von höhermolekularen Estern nachgewiesen werden. Es handelte sich hierbei um „Mischester“, deren Struktur aus Reaktionsprodukten der beiden VOC-Vorläufermoleküle aufgebaut war. Durch diese neuen Erkenntnisse, über die Bildung von Estern im SOA des Cyclohexens, wurden die Dimer-Bildung einer reinen α-Pinen/Ozon-Reaktion online und offline massenspektrometrisch untersucht. Hier stellten sich als Hauptprodukte die Verbindungen mit m/z 357 und m/z 367 ([M-H]--Ionen) heraus, welche zudem erstmals auf einem Filter einer Realprobe aus Hyytiälä, Finnland nachgewiesen werden konnten. Aufgrund ihrer Fragmentierung in MS/MS-Untersuchungen sowie den exakten Summenformeln aus FT-MS Messungen konnte für die Struktur der höhermolekularen Verbindung mit m/z 367 ebenfalls ein Ester und für m/z 357 ein Peroxyhemiacetal vorgeschlagen werden. Die vorgeschlagene Struktur der Verbindung m/z 367 konnte im Anschluss über eine Reaktion aus Hydroxypinonsäure mit Pinsäure bestätigt werden. Die Identifizierung der Esterverbindung des α-Pinen-SOA erfolgte ebenfalls mit Hilfe von LC-MSn-Messungen.rnDie bisher diskutierten Ergebnisse, sowie die meisten in der Literatur beschriebenen Studien befassen sich jedoch mit einzelnen Vorläuferverbindungen, im Gegensatz zu den komplexen SOA-Proben aus den Emissionen der Vegetation. Im Rahmen einer Messkampagne am Forschungszentrum Jülich erfolgte eine massenspektrometrische Charakterisierung (online-APCI-MS) des SOAs aus direkten VOC-Emissionen von Pflanzen. Durch einen Vergleich der Produktverteilung dieser erhalten online-Massenspektren mit denen aus den Reaktionen einzelner VOCs, konnten Aussagen über die in den Reaktionen umgesetzten VOCs gemacht werden. Es konnte gezeigt werden, dass in stressbedingten Situationen die untersuchten Exemplare der Betula pendula (Birke) hauptsächlich Sesquiterpene, Picea abies (Fichte) eher Monoterpene und Eucalyptus (Eukalyptus) sowohl Sesquiterpene als auch Monoterpene emittieren. Um die atmosphärischen Prozesse, die zur Bildung der Produkte im SOA führen vollständig zu verstehen, müssen jedoch noch weitere Anstrengungen unternommen werden.rn
Resumo:
In dieser Arbeit wurden die OH-Radikalausbeuten beider Doppelbindungen von alpha-Phellandren, alpha-Terpinen, Limonen und Terpinolen bei der Ozonolyse getrennt voneinander bestimmt. Dabei wurde sich die hohe zeitliche Auflösung des PTR-MS zunutze gemacht. Es wurden die OH-Radikale mittels Cyclohexan abgefangen und aus dem daraus gebildeten Cyclohexanon die OH-Radikalausbeute berechnet. Dadurch konnten zum ersten Mal die OH-Radikalausbeuten der langsamer reagierenden Doppelbindung bestimmt werden. Es ergaben sich für alpha-Phellandren 8%11% (±3%), alpha-Terpinen 12%14% (±4%), Limonen 7%10% (±3%) und für Terpinolen 39%48% (±14%). Desweiteren wurde eine theoretische Diskussion über den Reaktionsmechanismus der Ozonolyse und dem daraus gebildetem Criegee-Intermediat durchgeführt. Dadurch konnten die OH-Radikalausbeuten erklärt werden und eine Voraussage über die OH-Radikalausbeute bei anderen Verbindungen ist mit diesen Überlegungen möglich. In einer Messkampagne in Paris konnten verschiedene VOCs und andere atmosphärisch relevante Komponenten wie Ozon, CO, NO2 und NO gemessen werden. Aus diesen Daten wurde zum einen ein Datenpaket in Igor gefertigt, welches die Interpretation der Daten erleichtern sollte. Zum anderen wurden die Daten mit einem PMF-Model analysiert.Durch die Analyse verschiedener Komponenten konnte die Frage beantwortet werden, ob die Lösungsmittelindustrie in und um Paris einen großen Einfluss auf die Konzentrationen gewisser Komponenten in der Luft hat. Über die Korrelation von Benzol und Toluol mit schwarzem Kohlenstoff und den typischen Tagesverlauf mit zwei Konzentrationsmaxima dieser Komponenten konnte gezeigt werden, dass als Hauptquelle diese beiden Stoffe nur der Straßenverkehr infrage kommt. Desweiteren konnte gezeigt werden, dass die Luftmassen die Paris erreichen einen großen Einfluss auf die Konzentration gewisser Komponenten in der Luft haben. Dadurch konnte gut zwischen lokalen Quellen und weit transportierten VOCs unterschieden werden. Schließlich konnten über das PFM-Model ein Großteil der in Paris gemessenen Substanzen in sieben unterschiedliche Quellen eingeteilt werden und deren prozentualer Einfluss während ozeanischer Luftmassen und kontinentalen Luftmassen bestimmt werden. Um Bestandteile von organischem Aerosol mithilfe eines PTR-MS und dessen schonender Ionisationstechnik detektieren zu können, wurde erfolgreich ein Einlass für das PTR-MS entwickelt der es ermöglicht neben den Messungen von VOCs in der Gasphase auch organisches Aerosol zu sammeln, desorbieren und zu detektieren. Zu Testen des neuen Einlasses wurden verschiedene Laborexperimente durchgeführt und es wurde eine Messkampagne in Cabauw (nahe Utrecht, NL) durchgeführt. Die Labortests des neuen Einlasses zeigen, dass es möglich ist organisches Aerosol und VOCs (Aerosol Precurser) in der Gasphase mit einem einzelnen Instrument zu messen. Dazu wurden in einer Smog Chamber Isopren, alpha-Pinen, Limonen und beta-Caryophyllen jeweils mit Ozon zur Reaktion gebracht. Die Messungen in der Gasphase zeigten, dass verschiedene Komponenten wie gewohnt mit hoher Zeitauflösung durch das PTR-MS detektiert werden konnten. Die Messungen des Aerosols zeigten, dass es möglich ist, viele der aus den Reaktionen bekannten Produkte direkt oder mit geringer Fragmentation zu detektieren. Die Messkampagne in Cabauw zeigte, dass es mit diesem Einlass möglich ist über einen langen Zeitraum Aerosol und VOCs mit nur einem Instrument zu messen. Die Gasphasenmessungen sind unbeeinflusst von den Modifikationen, die an dem PTR-MS und der Driftröhre vorgenommen werden mussten um Aerosol detektieren zu können. Desweiteren konnte gezeigt werden, dass sich natürliches organisches Aerosol von Aerosol aus einer Smog Chamber im Dampfdruck unterscheidet. Deswegen muss man vorsichtig sein, falls man diese zwei Aerosolarten miteinander vergleichen will.
Resumo:
Im Zuge dieser Arbeit ist ein Massenspektrometer zur flugzeuggetragenen Messung von HNO3 und HONO auf dem neuen deutschen Forschungsflugzeug HALO aufgebaut worden (AIMS - Atmospheric chemical Ionization Mass Spectrometer). Die Ionisation der HNO3- und HONO-Moleküle erfolgt chemisch durch Reaktion mit SF5- -Ionen. Basierend auf den Ergebnissen von Laborversuchen wurden die Betriebsparameter optimiert, die Einzelkomponenten im HALO-Rack zusammengestellt und eine Einlassleitung entworfen, die Wandeffekte minimiert und Untergrundmessungen und HNO3-Kalibrationen im Flug ermöglicht. Die Empfindlichkeit der Messung von HNO3 und HONO wurde ebenso im Labor untersucht wie Interferenzen mit Wasserdampf und Ozon. Die HONO-Vergleichskampagne FIONA am Europäischen Photoreaktor (EUPHORE) in Valencia war die erste Messkampagne mit AIMS. Bei den offenen Vergleichsmessungen stimmten die von AIMS gemessenen HONO-Mischungsverhältnisse innerhalb +-20% mit dem Median von 9 weiteren HONO-Messungen überein. Die ersten flugzeuggetragenen Messungen mit AIMS werden im Verlauf der HALO-Missionen ML-CIRRUS und TACTS stattfinden. Neben dem Aufbau und der Charakterisierung von AIMS war die Analyse der Aufnahme von HNO3 in Eispartikel von Kondensstreifen und Zirren Gegenstand dieser Arbeit. Die Aufnahme von HNO3 in Kondensstreifeneispartikel wurde erstmals systematisch anhand einer Flugzeugmesskampagne (CIRRUS-III) untersucht. Während CIRRUS-III im November 2006 wurden Zirren und zufällig knapp 40 persistente Kondensstreifen über Deutschland und Nordeuropa beprobt. Die Messungen fanden in Höhen zwischen 10 und 11.5 km und bei Temperaturen zwischen 210 und 230 K statt. Die HNO3-Konzentration wurde mit Hilfe von NOy-Messungen bestimmt. Im Mittel war in Kondensstreifen ein größerer Anteil des Gesamt-HNO3 in den Eispartikeln gebunden (6 %) als in Zirren (3 %). Das Gasphasenäquivalent des eisgebundenen HNO3 betrug in Zirren durchschnittlich 6 pmol/mol, in Kondensstreifen 14 pmol/mol und in jungen Kondensstreifen (Alter<1 h) 21 pmol/mol. Das Mischungsverhältnis von HNO3 zu H2O in Eispartikeln war in Kondensstreifen leicht höher als in Zirren unter ähnlichen meteorologischen Bedingungen. Ursächlich für die höheren Werte in persistenten Kondensstreifen sind wahrscheinlich die hohen HNO3-Konzentrationen in den Abgasfahnen der Flugzeuge bei der Kondensstreifenbildung. Die beobachtete Abnahme des HNO3/H2O-Molverhältnisses mit zunehmendem Effektivdurchmesser der Eispartikel deutet an, dass die HNO3-Konzentrationen in Eispartikeln von jungen Kondensstreifen durch die Aufnahme von Abgas-HNO3 in die gefrierenden Aerosolpartikel bestimmt wird. Die Konzentrationen in älteren Kondensstreifen werden zunehmend durch das Vergraben von Umgebungs-HNO3 in wachsenden Eispartikeln kontrolliert. Diese Studie leistet einen Beitrag zu einem besseren Prozessverständnis der HNO3-Aufnahme in atmosphärische Eispartikel. Sie motiviert die Nutzung persistenter Kondensstreifen als atmosphärisches Labor zur Untersuchung der Spurengasaufnahme in wachsende Eispartikel.
Resumo:
The biosphere emits copiously volatile organic compounds (VOCs) into the atmosphere, which are removed again depending on the oxidative capacity of the atmosphere and physical processes such as mixing, transport and deposition. Biogenic VOCs react with the primary oxidant of the atmosphere, the hydroxyl radical (OH), and potentially lead to the formation tropospheric ozone and aerosol, which impact regional climate and air quality. The rate of OH decay in the atmosphere, the total OH reactivity is a function of the atmospheric, reactive compound's concentration and reaction velocity with OH. One way to measure the total OH reactivity, the total OH sink, is with the Comparative Reactivity Method - CRM. Basically, the reaction of OH with a reagent (here pyrrole) in clean air and in the presence of atmospheric, reactive molecules is compared. This thesis presents measurements of the total OH reactivity at the biosphere-atmosphere interface to analyze various influences and driving forces. For measurements in natural environment the instrument was automated and a direct, undisturbed sampling method developed. Additionally, an alternative detection system was tested and compared to the originally used detector (Proton Transfer Reaction-Mass Spectrometer, PTR-MS). The GC-PID (Gas Chromatographic Photo-Ionization Detector) was found as a smaller, less expensive, and robust alternative for total OH reactivity measurements. The HUMPPA-COPEC 2010 measurement campaign in the Finish forest was impacted by normal boreal forest emissions as well as prolonged heat and biomass burning emissions. The measurement of total OH reactivity was compared with a comprehensive set of monitored individual species ambient concentration levels. A significant discrepancy between those individually measured OH sinks and the total OH reactivity was observed, which was characterized in detail by the comparison of within and above the forest canopy detected OH reactivity. Direct impact of biogenic emissions on total OH reactivity was examined on Kleiner Feldberg, Germany, 2011. Trans-seasonal measurements of an enclosed Norway spruce branch were conducted via PTR-MS, for individual compound's emission rates, and CRM, for total OH reactivity emission fluxes. Especially during summertime, the individually monitored OH sink terms could not account for the measured total OH reactivity. A controlled oxidation experiment in a low NOx environment was conducted in the EUPHORE reaction chamber (CHEERS, Spain 2011). The concentration levels of the reactant isoprene and its major products were monitored and compared to total OH reactivity measurements as well as to the results of two models. The individually measured compounds could account for the total OH reactivity during this experiment as well as the traditional model-degradation scheme for isoprene (MCM 3.2). Due to previous observations of high OH levels in the isoprene-rich environment of the tropics, a novel isoprene mechanism was recently suggested. In this mechanism (MIME v4) additional OH is generated during isoprene oxidation, which could not be verified in the conditions of the CHEERS experiment.
Resumo:
Aerosol particles are important actors in the Earth’s atmosphere and climate system. They scatter and absorb sunlight, serve as nuclei for water droplets and ice crystals in clouds and precipitation, and are a subject of concern for public health. Atmospheric aerosols originate from both natural and anthropogenic sources, and emissions resulting from human activities have the potential to influence the hydrological cycle and climate. An assessment of the extent and impacts of this human force requires a sound understanding of the natural aerosol background. This dissertation addresses the composition, properties, and atmospheric cycling of biogenic aerosol particles, which represent a major fraction of the natural aerosol burden. The main focal points are: (i) Studies of the autofluo-rescence of primary biological aerosol particles (PBAP) and its application in ambient measure-ments, and (ii) X-ray microscopic and spectroscopic investigations of biogenic secondary organic aerosols (SOA) from the Amazonian rainforest.rnAutofluorescence of biological material has received increasing attention in atmospheric science because it allows real-time monitoring of PBAP in ambient air, however it is associated with high uncertainty. This work aims at reducing the uncertainty through a comprehensive characterization of the autofluorescence properties of relevant biological materials. Fluorescence spectroscopy and microscopy were applied to analyze the fluorescence signatures of pure biological fluorophores, potential non-biological interferences, and various types of reference PBAP. Characteristic features and fingerprint patterns were found and provide support for the operation, interpretation, and further development of PBAP autofluorescence measurements. Online fluorescence detection and offline fluorescence microscopy were jointly applied in a comprehensive bioaerosol field measurement campaign that provided unprecedented insights into PBAP-linked biosphere-atmosphere interactions in a North-American semi-arid forest environment. Rain showers were found to trigger massive bursts of PBAP, including high concentrations of biological ice nucleators that may promote further precipitation and can be regarded as part of a bioprecipitation feedback cycle in the climate system. rnIn the pristine tropical rainforest air of the Amazon, most cloud and fog droplets form on bio-genic SOA particles, but the composition, morphology, mixing state and origin of these particles is hardly known. X-ray microscopy and spectroscopy (STXM-NEXAFS) revealed distinctly different types of secondary organic matter (carboxyl- vs. hydroxy-rich) with internal structures that indicate a strong influence of phase segregation, cloud and fog processing on SOA formation, and aging. In addition, nanometer-sized potassium-rich particles emitted by microorganisms and vegetation were found to act as seeds for the condensation of SOA. Thus, the influence of forest biota on the atmospheric abundance of cloud condensation nuclei appears to be more direct than previously assumed. Overall, the results of this dissertation suggest that biogenic aerosols, clouds and precipitation are indeed tightly coupled through a bioprecipitation cycle, and that advanced microscopic and spectroscopic techniques can provide detailed insights into these mechanisms.rn
Resumo:
Die vorliegende Arbeit untersucht die Struktur und Zusammensetzung der untersten Atmosphäre im Rahmen der PARADE-Messkampagne (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) am Kleinen Feldberg in Deutschland im Spätsommer 2011. Dazu werden Messungen von meteorologischen Grundgrößen (Temperatur, Feuchte, Druck, Windgeschwindigkeit und -richtung) zusammen mit Radiosonden und flugzeuggetragenen Messungen von Spurengasen (Kohlenstoffmonoxid, -dioxid, Ozon und Partikelanzahlkonzentrationen) ausgewertet. Ziel ist es, mit diesen Daten, die thermodynamischen und dynamischen Eigenschaften und deren Einfluss auf die chemische Luftmassenzusammensetzung in der planetaren Grenzschicht zu bestimmen. Dazu werden die Radiosonden und Flugzeugmessungen mit Lagrangeschen Methoden kombiniert und es wird zwischen rein kinematischen Modellen (LAGRANTO und FLEXTRA) sowie sogenannten Partikeldispersionsmodellen (FLEXPART) unterschieden. Zum ersten Mal wurde im Rahmen dieser Arbeit dabei auch eine Version von FLEXPART-COSMO verwendet, die von den meteorologischen Analysefeldern des Deutschen Wetterdienstes angetrieben werden. Aus verschiedenen bekannten Methoden der Grenzschichthöhenbestimmung mit Radiosondenmessungen wird die Bulk-Richardson-Zahl-Methode als Referenzmethode verwendet, da sie eine etablierte Methode sowohl für Messungen und als auch Modellanalysen darstellt. Mit einer Toleranz von 125 m, kann zu 95 % mit mindestens drei anderen Methoden eine Übereinstimmung zu der ermittelten Grenzschichthöhe festgestellt werden, was die Qualität der Grenzschichthöhe bestätigt. Die Grenzschichthöhe variiert während der Messkampagne zwischen 0 und 2000 m über Grund, wobei eine hohe Grenzschicht nach dem Durchzug von Kaltfronten beobachtet wird, hingegen eine niedrige Grenzschicht unter Hochdruckeinfluss und damit verbundener Subsidenz bei windarmen Bedingungen im Warmsektor. Ein Vergleich zwischen den Grenzschichthöhen aus Radiosonden und aus Modellen (COSMO-DE, COSMO-EU, COSMO-7) zeigt nur geringe Unterschiede um -6 bis +12% während der Kampagne am Kleinen Feldberg. Es kann allerdings gezeigt werden, dass in größeren Simulationsgebieten systematische Unterschiede zwischen den Modellen (COSMO-7 und COSMO-EU) auftreten. Im Rahmen dieser Arbeit wird deutlich, dass die Bodenfeuchte, die in diesen beiden Modellen unterschiedlich initialisiert wird, zu verschiedenen Grenzschichthöhen führt. Die Folge sind systematische Unterschiede in der Luftmassenherkunft und insbesondere der Emissionssensitivität. Des Weiteren kann lokale Mischung zwischen der Grenzschicht und der freien Troposphäre bestimmt werden. Dies zeigt sich in der zeitlichen Änderung der Korrelationen zwischen CO2 und O3 aus den Flugzeugmessungen, und wird im Vergleich mit Rückwärtstrajektorien und Radiosondenprofilen bestärkt. Das Einmischen der Luftmassen in die Grenzschicht beeinflusst dabei die chemische Zusammensetzung in der Vertikalen und wahrscheinlich auch am Boden. Diese experimentelle Studie bestätigt die Relevanz der Einmischungsprozesse aus der freien Troposphäre und die Verwendbarkeit der Korrelationsmethode, um Austausch- und Einmischungsprozesse an dieser Grenzfläche zu bestimmen.
Resumo:
Die Mikrophysik in Wolken bestimmt deren Strahlungseigenschaften und beeinflusst somit auch den Strahlungshaushalt des Planeten Erde. Aus diesem Grund werden im Rahmen der vorliegenden Arbeit die mikrophysikalischen Charakteristika von Cirrus-Wolken sowie von arktischen Grenzschicht-Wolken behandelt. Die Untersuchung dieser Wolken wurde mithilfe verschiedener Instrumente verwirklicht, welche Partikel in einem Durchmesserbereich von 250nm bis zu 6.4mm vermessen und an Forschungsflugzeugen montiert werden. Ein Instrumentenvergleich bestätigt, dass innerhalb der Bereiche in denen sich die Messungen dieser Instrumente überlappen, die auftretenden Diskrepanzen als sehr gering einzustufen sind. Das vorrangig verwendete Instrument trägt die Bezeichnung CCP (Cloud Combination Probe) und ist eine Kombination aus einem Instrument, das Wolkenpartikel anhand von vorwärts-gerichtetem Streulicht detektiert und einem weiteren, das zweidimensionale Schattenbilder einzelner Wolkenpartikel aufzeichnet. Die Untersuchung von Cirrus-Wolken erfolgt mittels Daten der AIRTOSS-ICE (AIRcraft TOwed Sensor Shuttle - Inhomogeneous Cirrus Experiment) Kampagne, welche im Jahr 2013 über der deutschen Nord- und Ostsee stattfand. Parameter wie Partikeldurchmesser, Partikelanzahlkonzentration, Partikelform, Eiswassergehalt, Wolkenhöhe und Wolkendicke der detektierten Cirrus-Wolken werden bestimmt und im Kontext des aktuellen Wissenstandes diskutiert. Des Weiteren wird eine beprobte Cirrus-Wolke im Detail analysiert, welche den typischen Entwicklungsprozess und die vertikale Struktur dieser Wolkengattung widerspiegelt. Arktische Grenzschicht-Wolken werden anhand von Daten untersucht, die während der VERDI (VERtical Distribution of Ice in Arctic Clouds) Kampagne im Jahr 2012 über der kanadischen Beaufortsee aufgezeichnet wurden. Diese Messkampagne fand im Frühling statt, um die Entwicklung von Eis-Wolken über Mischphasen-Wolken bis hin zu Flüssigwasser-Wolken zu beobachten. Unter bestimmten atmosphärischen Bedingungen tritt innerhalb von Mischphasen-Wolken der sogenannte Wegener-Bergeron-Findeisen Prozess auf, bei dem Flüssigwassertropfen zugunsten von Eispartikeln verdampfen. Es wird bestätigt, dass dieser Prozess anhand von mikrophysikalischen Messungen, insbesondere den daraus resultierenden Größenverteilungen, nachweisbar ist. Darüber hinaus wird eine arktische Flüssigwasser-Wolke im Detail untersucht, welche im Inneren das Auftreten von monomodalen Tröpfchen-Größenverteilungen zeigt. Mit zunehmender Höhe wachsen die Tropfen an und die Maxima der Größenverteilungen verschieben sich hin zu größeren Durchmessern. Dahingegen findet im oberen Übergangsbereich dieser Flüssigwasser-Wolke, zwischen Wolke und freier Atmosphäre, ein Wechsel von monomodalen zu bimodalen Tröpfchen-Größenverteilungen statt. Diese weisen eine Mode 1 mit einem Tropfendurchmesser von 20μm und eine Mode 2 mit einem Tropfendurchmesser von 10μm auf. Das dieses Phänomen eventuell typisch für arktische Flüssigwasser-Wolken ist, zeigen an dem Datensatz durchgeführte Analysen. Mögliche Entstehungsprozesse der zweiten Mode können durch Kondensation von Wasserdampf auf eingetragenen Aerosolpartikeln, die aus einer Luftschicht oberhalb der Wolke stammen oder durch Wirbel, welche trockene Luftmassen in die Wolke induzieren und Verdampfungsprozesse von Wolkentröpfchen hervorrufen, erklärt werden. Unter Verwendung einer direkten numerischen Simulation wird gezeigt, dass die Einmischung von trockenen Luftmassen in den Übergangsbereich der Wolke am wahrscheinlichsten die Ausbildung von Mode 2 verursacht.