5 resultados para Local Galerkin method

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit wird ein neuer Dynamikkern entwickelt und in das bestehendernnumerische Wettervorhersagesystem COSMO integriert. Für die räumlichernDiskretisierung werden diskontinuierliche Galerkin-Verfahren (DG-Verfahren)rnverwendet, für die zeitliche Runge-Kutta-Verfahren. Hierdurch ist ein Verfahrenrnhoher Ordnung einfach zu realisieren und es sind lokale Erhaltungseigenschaftenrnder prognostischen Variablen gegeben. Der hier entwickelte Dynamikkern verwendetrngeländefolgende Koordinaten in Erhaltungsform für die Orographiemodellierung undrnkoppelt das DG-Verfahren mit einem Kessler-Schema für warmen Niederschlag. Dabeirnwird die Fallgeschwindigkeit des Regens, nicht wie üblich implizit imrnKessler-Schema diskretisiert, sondern explizit im Dynamikkern. Hierdurch sindrndie Zeitschritte der Parametrisierung für die Phasenumwandlung des Wassers undrnfür die Dynamik vollständig entkoppelt, wodurch auch sehr große Zeitschritte fürrndie Parametrisierung verwendet werden können. Die Kopplung ist sowohl fürrnOperatoraufteilung, als auch für Prozessaufteilung realisiert.rnrnAnhand idealisierter Testfälle werden die Konvergenz und die globalenrnErhaltungseigenschaften des neu entwickelten Dynamikkerns validiert. Die Massernwird bis auf Maschinengenauigkeit global erhalten. Mittels Bergüberströmungenrnwird die Orographiemodellierung validiert. Die verwendete Kombination ausrnDG-Verfahren und geländefolgenden Koordinaten ermöglicht die Behandlung vonrnsteileren Bergen, als dies mit dem auf Finite-Differenzenverfahren-basierendenrnDynamikkern von COSMO möglich ist. Es wird gezeigt, wann die vollernTensorproduktbasis und wann die Minimalbasis vorteilhaft ist. Die Größe desrnEinflusses auf das Simulationsergebnis der Verfahrensordnung, desrnParametrisierungszeitschritts und der Aufteilungsstrategie wirdrnuntersucht. Zuletzt wird gezeigt dass bei gleichem Zeitschritt die DG-Verfahrenrnaufgrund der besseren Skalierbarkeit in der Laufzeit konkurrenzfähig zurnFinite-Differenzenverfahren sind.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Allgemein erlaubt adaptive Gitterverfeinerung eine Steigerung der Effizienz numerischer Simulationen ohne dabei die Genauigkeit des Ergebnisses signifikant zu verschlechtern. Es ist jedoch noch nicht erforscht, in welchen Bereichen des Rechengebietes die räumliche Auflösung tatsächlich vergröbert werden kann, ohne die Genauigkeit des Ergebnisses signifikant zu beeinflussen. Diese Frage wird hier für ein konkretes Beispiel von trockener atmosphärischer Konvektion untersucht, nämlich der Simulation von warmen Luftblasen. Zu diesem Zweck wird ein neuartiges numerisches Modell entwickelt, das auf diese spezielle Anwendung ausgerichtet ist. Die kompressiblen Euler-Gleichungen werden mit einer unstetigen Galerkin Methode gelöst. Die Zeitintegration geschieht mit einer semi-implizite Methode und die dynamische Adaptivität verwendet raumfüllende Kurven mit Hilfe der Funktionsbibliothek AMATOS. Das numerische Modell wird validiert mit Hilfe einer Konvergenzstudie und fünf Standard-Testfällen. Eine Methode zum Vergleich der Genauigkeit von Simulationen mit verschiedenen Verfeinerungsgebieten wird eingeführt, die ohne das Vorhandensein einer exakten Lösung auskommt. Im Wesentlichen geschieht dies durch den Vergleich von Eigenschaften der Lösung, die stark von der verwendeten räumlichen Auflösung abhängen. Im Fall einer aufsteigenden Warmluftblase ist der zusätzliche numerische Fehler durch die Verwendung der Adaptivität kleiner als 1% des gesamten numerischen Fehlers, wenn die adaptive Simulation mehr als 50% der Elemente einer uniformen hoch-aufgelösten Simulation verwendet. Entsprechend ist die adaptive Simulation fast doppelt so schnell wie die uniforme Simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Im Mittelpunkt dieser Arbeit steht Beweis der Existenz- und Eindeutigkeit von Quadraturformeln, die für das Qualokationsverfahren geeignet sind. Letzteres ist ein von Sloan, Wendland und Chandler entwickeltes Verfahren zur numerischen Behandlung von Randintegralgleichungen auf glatten Kurven (allgemeiner: periodische Pseudodifferentialgleichungen). Es erreicht die gleichen Konvergenzordnungen wie das Petrov-Galerkin-Verfahren, wenn man durch den Operator bestimmte Quadraturformeln verwendet. Zunächst werden die hier behandelten Pseudodifferentialoperatoren und das Qualokationsverfahren vorgestellt. Anschließend wird eine Theorie zur Existenz und Eindeutigkeit von Quadraturformeln entwickelt. Ein wesentliches Hilfsmittel hierzu ist die hier bewiesene Verallgemeinerung eines Satzes von Nürnberger über die Existenz und Eindeutigkeit von Quadraturformeln mit positiven Gewichten, die exakt für Tschebyscheff-Räume sind. Es wird schließlich gezeigt, dass es stets eindeutig bestimmte Quadraturformeln gibt, welche die in den Arbeiten von Sloan und Wendland formulierten Bedingungen erfüllen. Desweiteren werden 2-Punkt-Quadraturformeln für so genannte einfache Operatoren bestimmt, mit welchen das Qualokationsverfahren mit einem Testraum von stückweise konstanten Funktionen eine höhere Konvergenzordnung hat. Außerdem wird gezeigt, dass es für nicht-einfache Operatoren im Allgemeinen keine Quadraturformel gibt, mit der die Konvergenzordnung höher als beim Petrov-Galerkin-Verfahren ist. Das letzte Kapitel beinhaltet schließlich numerische Tests mit Operatoren mit konstanten und variablen Koeffizienten, welche die theoretischen Ergebnisse der vorangehenden Kapitel bestätigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within this PhD thesis several methods were developed and validated which can find applicationare suitable for environmental sample and material science and should be applicable for monitoring of particular radionuclides and the analysis of the chemical composition of construction materials in the frame of ESS project. The study demonstrated that ICP-MS is a powerful analytical technique for ultrasensitive determination of 129I, 90Sr and lanthanides in both artificial and environmental samples such as water and soil. In particular ICP-MS with collision cell allows measuring extremely low isotope ratios of iodine. It was demonstrated that isotope ratios of 129I/127I as low as 10-7 can be measured with an accuracy and precision suitable for distinguishing sample origins. ICP-MS with collision cell, in particular in combination with cool plasma conditions, reduces the influence of isobaric interferences on m/z = 90 and is therefore well-suited for 90Sr analysis in water samples. However, the applied ICP-CC-QMS in this work is limited for the measurement of 90Sr due to the tailing of 88Sr+ and in particular Daly detector noise. Hyphenation of capillary electrophoresis with ICP-MS was shown to resolve atomic ions of all lanthanides and polyatomic interferences. The elimination of polyatomic and isobaric ICP-MS interferences was accomplished without compromising the sensitivity by the use of a high resolution mode as available on ICP-SFMS. Combination of laser ablation with ICP-MS allowed direct micro and local uranium isotope ratio measurements at the ultratrace concentrations on the surface of biological samples. In particular, the application of a cooled laser ablation chamber improves the precision and accuracy of uranium isotopic ratios measurements in comparison to the non-cooled laser ablation chamber by up to one order of magnitude. In order to reduce the quantification problem, a mono gas on-line solution-based calibration was built based on the insertion of a microflow nebulizer DS-5 directly into the laser ablation chamber. A micro local method to determine the lateral element distribution on NiCrAlY-based alloy and coating after oxidation in air was tested and validated. Calibration procedures involving external calibration, quantification by relative sensitivity coefficients (RSCs) and solution-based calibration were investigated. The analytical method was validated by comparison of the LA-ICP-MS results with data acquired by EDX.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lattice Boltzmann method is a popular approach for simulating hydrodynamic interactions in soft matter and complex fluids. The solvent is represented on a discrete lattice whose nodes are populated by particle distributions that propagate on the discrete links between the nodes and undergo local collisions. On large length and time scales, the microdynamics leads to a hydrodynamic flow field that satisfies the Navier-Stokes equation. In this thesis, several extensions to the lattice Boltzmann method are developed. In complex fluids, for example suspensions, Brownian motion of the solutes is of paramount importance. However, it can not be simulated with the original lattice Boltzmann method because the dynamics is completely deterministic. It is possible, though, to introduce thermal fluctuations in order to reproduce the equations of fluctuating hydrodynamics. In this work, a generalized lattice gas model is used to systematically derive the fluctuating lattice Boltzmann equation from statistical mechanics principles. The stochastic part of the dynamics is interpreted as a Monte Carlo process, which is then required to satisfy the condition of detailed balance. This leads to an expression for the thermal fluctuations which implies that it is essential to thermalize all degrees of freedom of the system, including the kinetic modes. The new formalism guarantees that the fluctuating lattice Boltzmann equation is simultaneously consistent with both fluctuating hydrodynamics and statistical mechanics. This establishes a foundation for future extensions, such as the treatment of multi-phase and thermal flows. An important range of applications for the lattice Boltzmann method is formed by microfluidics. Fostered by the "lab-on-a-chip" paradigm, there is an increasing need for computer simulations which are able to complement the achievements of theory and experiment. Microfluidic systems are characterized by a large surface-to-volume ratio and, therefore, boundary conditions are of special relevance. On the microscale, the standard no-slip boundary condition used in hydrodynamics has to be replaced by a slip boundary condition. In this work, a boundary condition for lattice Boltzmann is constructed that allows the slip length to be tuned by a single model parameter. Furthermore, a conceptually new approach for constructing boundary conditions is explored, where the reduced symmetry at the boundary is explicitly incorporated into the lattice model. The lattice Boltzmann method is systematically extended to the reduced symmetry model. In the case of a Poiseuille flow in a plane channel, it is shown that a special choice of the collision operator is required to reproduce the correct flow profile. This systematic approach sheds light on the consequences of the reduced symmetry at the boundary and leads to a deeper understanding of boundary conditions in the lattice Boltzmann method. This can help to develop improved boundary conditions that lead to more accurate simulation results.