6 resultados para Linear system solve
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.
Resumo:
The intraspecific phylogeography of four European coastal plants, Crithmum maritimum, Halimione portulacoides, Salsola kali and Calystegia soldanella, was inferred from AFLP and ITS data. Only in C. maritimum, H. portulacoides and S. kali, a spatial genetic structure was revealed. The phylogeographic similarities and dissimilarities of these species include: (1) All three have distinct Black/Aegean and Adriatic Sea clusters. (2) Salsola kali and H. portulacoides show a distinct Atlantic/North Sea/Baltic Sea cluster, while Atlantic and eastern Spanish material of C. maritimum clustered together. (3) In the west Mediterranean, only S. kali forms a single cluster, while both H. portulacoides and C. maritimum display a phylogeographic break in the vicinity of the southern French coast. For S. kali, AFLP and ITS data concur in identifying separate Atlantic, east and west Mediterranean clades. All these patterns are postulated to result from both temperature changes during the last glacial and contemporary sea currents. No geographic AFLP structure was revealed in C. soldanella, both at the range-wide and population level. This was attributed to the remarkable seed dispersal ability of this species and possibly its longevity and clonal growth, preserving a random pattern of genetic variation generated by long-distance seed dispersal over long time periods.
Resumo:
Die chronisch obstruktive Lungenerkrankung (engl. chronic obstructive pulmonary disease, COPD) ist ein Überbegriff für Erkrankungen, die zu Husten, Auswurf und Dyspnoe (Atemnot) in Ruhe oder Belastung führen - zu diesen werden die chronische Bronchitis und das Lungenemphysem gezählt. Das Fortschreiten der COPD ist eng verknüpft mit der Zunahme des Volumens der Wände kleiner Luftwege (Bronchien). Die hochauflösende Computertomographie (CT) gilt bei der Untersuchung der Morphologie der Lunge als Goldstandard (beste und zuverlässigste Methode in der Diagnostik). Möchte man Bronchien, eine in Annäherung tubuläre Struktur, in CT-Bildern vermessen, so stellt die geringe Größe der Bronchien im Vergleich zum Auflösungsvermögen eines klinischen Computertomographen ein großes Problem dar. In dieser Arbeit wird gezeigt wie aus konventionellen Röntgenaufnahmen CT-Bilder berechnet werden, wo die mathematischen und physikalischen Fehlerquellen im Bildentstehungsprozess liegen und wie man ein CT-System mittels Interpretation als lineares verschiebungsinvariantes System (engl. linear shift invariant systems, LSI System) mathematisch greifbar macht. Basierend auf der linearen Systemtheorie werden Möglichkeiten zur Beschreibung des Auflösungsvermögens bildgebender Verfahren hergeleitet. Es wird gezeigt wie man den Tracheobronchialbaum aus einem CT-Datensatz stabil segmentiert und mittels eines topologieerhaltenden 3-dimensionalen Skelettierungsalgorithmus in eine Skelettdarstellung und anschließend in einen kreisfreien Graphen überführt. Basierend auf der linearen System Theorie wird eine neue, vielversprechende, integral-basierte Methodik (IBM) zum Vermessen kleiner Strukturen in CT-Bildern vorgestellt. Zum Validieren der IBM-Resultate wurden verschiedene Messungen an einem Phantom, bestehend aus 10 unterschiedlichen Silikon Schläuchen, durchgeführt. Mit Hilfe der Skelett- und Graphendarstellung ist ein Vermessen des kompletten segmentierten Tracheobronchialbaums im 3-dimensionalen Raum möglich. Für 8 zweifach gescannte Schweine konnte eine gute Reproduzierbarkeit der IBM-Resultate nachgewiesen werden. In einer weiteren, mit IBM durchgeführten Studie konnte gezeigt werden, dass die durchschnittliche prozentuale Bronchialwandstärke in CT-Datensätzen von 16 Rauchern signifikant höher ist, als in Datensätzen von 15 Nichtrauchern. IBM läßt sich möglicherweise auch für Wanddickenbestimmungen bei Problemstellungen aus anderen Arbeitsgebieten benutzen - kann zumindest als Ideengeber dienen. Ein Artikel mit der Beschreibung der entwickelten Methodik und der damit erzielten Studienergebnisse wurde zur Publikation im Journal IEEE Transactions on Medical Imaging angenommen.
Resumo:
Der Bedarf an hyperpolarisiertem 3He in Medizin und physikalischer Grundlagenforschung ist in den letzten ca. 10-15 Jahren sowohl in Bezug auf die zu Verfügung stehende Menge, als auch auf den benötigten Grad der Kernspinpolarisation stetig gestiegen. Gleichzeitig mußten Lösungen für die polarisationserhaltende Speicherung und den Transport gefunden werden, die je nach Anwendung anzupassen waren. Als Ergebnis kann mit dieser Arbeit ein in sich geschlossenes Gesamtkonzept vorgestellt werden, daß sowohl die entsprechenden Mengen für klinische Anwendungen, als auch höchste Polarisation für physikalische Grundlagenfor-schung zur Verfügung stellen kann. Verschiedene unabhängige Polarimetriemethoden zeigten in sich konsistente Ergebnisse und konnten, neben ihrer eigenen Weiterentwicklung, zu einer verläßlichen Charakterisierung des neuen Systems und auch der Transportzellen und –boxen eingesetzt werden. Die Polarisation wird mittels „Metastabilem Optischen Pumpen“ bei einem Druck von 1 mbar erzeugt. Dabei werden ohne Gasfluß Werte von P = 84% erreicht. Im Flußbetrieb sinkt die erreichbare Polarisation auf P ≈ 77%. Das 3He kann dann weitgehend ohne Polarisationsver-luste auf mehrere bar komprimiert und zu den jeweiligen Experimenten transportiert werden. Durch konsequente Weiterentwicklung der vorgestellten Polarisationseinheit an fast allen Komponenten kann somit jetzt bei einem Fluß von 0,8 barl/h eine Polarisation von Pmax = 77% am Auslaß der Apparatur erreicht werden. Diese skaliert linear mit dem Fluß, sodaß bei 3 barl/h die Polarisation immer noch bei ca. 60% liegt. Dabei waren die im Rahmen dieser Arbeit durchgeführten Verbesserungen an den Lasern, der Optik, der Kompressionseinheit, dem Zwischenspeicher und der Gasreinigung wesentlich für das Erreichen dieser Polarisatio-nen. Neben dem Einsatz eines neuen Faserlasersystems ist die hohe Gasreinheit und die lang-lebige Kompressionseinheit ein Schlüssel für diese Leistungsfähigkeit. Seit Herbst 2001 er-zeugte das System bereits über 2000 barl hochpolarisiertes 3He und ermöglichte damit zahl-reiche interdisziplinäre Experimente und Untersuchungen. Durch Verbesserungen an als Prototypen bereits vorhandenen Transportboxen und durch weitgehende Unterdrückung der Wandrelaxation in den Transportgefäßen aufgrund neuer Erkenntnisse über deren Ursachen stellen auch polarisationserhaltende Transporte über große Strecken kein Problem mehr dar. In unbeschichteten 1 Liter Kolben aus Aluminosilikatglä-sern werden nun problemlos Speicherzeiten von T1 > 200h erreicht. Im Rahmen des europäi-schen Forschungsprojektes „Polarized Helium to Image the Lung“ wurden während 19 Liefe-rungen 70barl 3He nach Sheffield (UK) und bei 13 Transporten 100 barl nach Kopenhagen (DK) per Flugzeug transportiert. Zusammenfassend konnte gezeigt werden, daß die Problematik der Kernspinpolarisationser-zeugung von 3He, die Speicherung, der Transport und die Verwendung des polarisierten Ga-ses in klinischer Diagnostik und physikalischen Grundlagenexperimenten weitgehend gelöst ist und das Gesamtkonzept die Voraussetzungen für allgemeine Anwendungen auf diesen Gebieten geschaffen hat.
Resumo:
The collapse of linear polyelectrolyte chains in a poor solvent: When does a collapsing polyelectrolyte collect its counter ions? The collapse of polyions in a poor solvent is a complex system and is an active research subject in the theoretical polyelectrolyte community. The complexity is due to the subtle interplay between hydrophobic effects, electrostatic interactions, entropy elasticity, intrinsic excluded volume as well as specific counter-ion and co-ion properties. Long range Coulomb forces can obscure single molecule properties. The here presented approach is to use just a small amount of screening salt in combination with a very high sample dilution in order to screen intermolecular interaction whereas keeping intramolecular interaction as much as possible (polyelectrolyte concentration cp ≤ 12 mg/L, salt concentration; Cs = 10^-5 mol/L). This is so far not described in literature. During collapse, the polyion is subject to a drastic change in size along with strong reduction of free counterions in solution. Therefore light scattering was utilized to obtain the size of the polyion whereas a conductivity setup was developed to monitor the proceeding of counterion collection by the polyion. Partially quaternized PVP’s below and above the Manning limit were investigated and compared to the collapse of their uncharged precursor. The collapses were induced by an isorefractive solvent/non-solvent mixture consisting of 1-propanol and 2-pentanone, with nearly constant dielectric constant. The solvent quality for the uncharged polyion could be quantified which, for the first time, allowed the experimental investigation of the effect of electrostatic interaction prior and during polyion collapse. Given that the Manning parameter M for QPVP4.3 is as low as lB / c = 0.6 (lB the Bjerrum length and c the mean contour distance between two charges), no counterion binding should occur. However the Walden product reduces with first addition of non solvent and accelerates when the structural collapse sets in. Since the dielectric constant of the solvent remains virtually constant during the chain collapse, the counterion binding is entirely caused by the reduction in the polyion chain dimension. The collapse is shifted to lower wns with higher degrees of quaternization as the samples QPVP20 and QPVP35 show (M = 2.8 respectively 4.9). The combination of light scattering and conductivity measurement revealed for the first time that polyion chains already collect their counter ions well above the theta-dimension when the dimensions start to shrink. Due to only small amounts of screening salt, strong electrostatic interactions bias dynamic as well as static light scattering measurements. An extended Zimm formula was derived to account for this interaction and to obtain the real chain dimensions. The effective degree of dissociation g could be obtained semi quantitatively using this extrapolated static in combination with conductivity measurements. One can conclude the expansion factor a and the effective degree of ionization of the polyion to be mutually dependent. In the good solvent regime g of QPVP4.3, QPVP20 and QPVP35 exhibited a decreasing value in the order 1 > g4.3 > g20 > g35. The low values of g for QPVP20 and QPVP35 are assumed to be responsible for the prior collapse of the higher quaternized samples. Collapse theory predicts dipole-dipole attraction to increase accordingly and even predicts a collapse in the good solvent regime. This could be exactly observed for the QPVP35 sample. The experimental results were compared to a newly developed theory of uniform spherical collapse induced by concomitant counterion binding developed by M. Muthukumar and A. Kundagrami. The theory agrees qualitatively with the location of the phase boundary as well as the trend of an increasing expansion with an increase of the degree of quaternization. However experimental determined g for the samples QPVP4.3, QPVP20 and QPVP35 decreases linearly with the degree of quaternization whereas this theory predicts an almost constant value.
Resumo:
Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.