6 resultados para Linear multivariate methods

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the safety assessment of radioactive waste, the possibility of radionuclide migration has to be considered. Since Np (and also Th due to the long-lived 232-Th) will be responsible for the greatest amount of radioactivity one million years after discharge from the reactor, its (im)-mobilization in the geosphere is of great importance. Furthermore, the chemistry of Np(V) is quite similar (but not identical) to the chemistry of Pu(V). Three species of neptunium may be found in the near field of the waste disposal, but pentavalent neptunium is the most abundant species under a wide range of natural conditions. Within this work, the interaction of Np(V) with the clay mineral montmorillonite and melanodins (as model substances for humic acids) was studied. The sorption of neptunium onto gibbsite, a model clay for montmorillonite, was also investigated. The sorption of neptunium onto γ-alumina and montmorillonite was studied in a parallel doctoral work by S. Dierking. Neptunium is only found in ultra trace amounts in the environment. Therefore, sensitive and specific methods are needed for its determination. The sorption was determined by γ spectroscopy and LSC for the whole concentration range studied. In addition the combination of these techniques with ultrafiltration allowed the study of Np(V) complexation with melanoidins. Regrettably, the available speciation methods (e.g. CE-ICP-MS and EXAFS) are not capable to detect the environmentally relevant neptunium concentrations. Therefore, a combination of batch experiments and speciation analyses was performed. Further, the preparation of hybrid clay-based materials (HCM) montmorillonitemelanoidins for sorption studies was achieved. The formation of hybrid materials begins in the interlayers of the montmorillonite, and then the organic material spreads over the surface of the mineral. The sorption of Np onto HCM was studied at the environmentally relevant concentrations and the results obtained were compared with those predicted by the linear additive model by Samadfam. The sorption of neptunium onto gibbsite was studied in batch experiments and the sorption maximum determined at pH~8.5. The sorption isotherm pointed to the presence of strong and weak sorption sites in gibbsite. The Np speciation was studied by using EXAFS, which showed that the sorbed species was Np(V). The influence of M42 type melanodins on the sorption of Np(V) onto montmorillonite was also investigated at pH 7. The sorption of the melanoidins was affected by the order in which the components were added and by ionic strength. The sorption of Np was affected by ionic strength, pointing to outer sphere sorption, whereas the presence of increasing amounts of melanoidins had little influence on Np sorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the detection of hidden objects by low-frequency electromagnetic imaging the Linear Sampling Method works remarkably well despite the fact that the rigorous mathematical justification is still incomplete. In this work, we give an explanation for this good performance by showing that in the low-frequency limit the measurement operator fulfills the assumptions for the fully justified variant of the Linear Sampling Method, the so-called Factorization Method. We also show how the method has to be modified in the physically relevant case of electromagnetic imaging with divergence-free currents. We present numerical results to illustrate our findings, and to show that similar performance can be expected for the case of conducting objects and layered backgrounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis details the development of quantum chemical methods for the accurate theoretical description of molecular systems with a complicated electronic structure. In simple cases, a single Slater determinant, in which the electrons occupy a number of energetically lowest molecular orbitals, offers a qualitatively correct model. The widely used coupled-cluster method CCSD(T) efficiently includes electron correlation effects starting from this determinant and provides reaction energies in error by only a few kJ/mol. However, the method often fails when several electronic configurations are important, as, for instance, in the course of many chemical reactions or in transition metal compounds. Internally contracted multireference coupled-cluster methods (ic-MRCC methods) cure this deficiency by using a linear combination of determinants as a reference function. Despite their theoretical elegance, the ic-MRCC equations involve thousands of terms and are therefore derived by the computer. Calculations of energy surfaces of BeH2, HF, LiF, H2O, N2 and Be3 unveil the theory's high accuracy compared to other approaches and the quality of various hierarchies of approximations. New theoretical advances include size-extensive techniques for removing linear dependencies in the ic-MRCC equations and a multireference analog of CCSD(T). Applications of the latter method to O3, Ni2O2, benzynes, C6H7NO and Cr2 underscore its potential to become a new standard method in quantum chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.