21 resultados para Light sensitive materials

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Fokus dieser Arbeit liegt in dem Design, der Synthese und der Charakterisierung neuartiger photosensitiver Mikrogele und Nanopartikel als potentielle Materialien für Beladungs- und Freisetzungsanwendungen. Zur Realisierung dieses Konzepts wurden verschiedene Ansätze untersucht.Es wurden neuartige niedermolekulare lichtspaltbare Vernetzermoleküle auf der Basis von o-Nitrobenzylderivaten synthetisiert, charakterisiert und zur Herstellung von photosensitiven PMMA und PHEMA Mikrogelen verwendet. Diese sind unter Bestrahlung in organischen Lösungsmitteln quellbar und zersetzbar. Durch die Einführung anionischer MAA Gruppen in solche PHEMA Mikrogele wurde dieses Konzept auf doppelt stimuliresponsive p(HEMA-co-MAA) Mikrogele erweitert. Hierbei wurde ein pH-abhängiges Quellbarkeitsprofil mit der lichtinduzierten Netzwerkspaltung in wässrigen Medien kombiniert. Diese duale Sensitivität zu zwei zueinander orthogonalen Reizen stellt ein vielversprechendes Konzept zur Kombination einer pH-abhängigen Beladung mit einer lichtinduzierten Freisetzung von funktionellen Substanzen dar. Desweiteren wurden PAAm Mikrogele entwickelt, welche sowohl eine Sensitivität gegenüber Enzymen als auch Licht aufweisen. Dieses Verhalten wurde durch die Verwendung von (meth-)acrylatfunktionalisierten Dextranen als polymere Vernetzungsmoleküle erreicht. Das entsprechende stimuliresponsive Profil basiert auf der enzymatischen Zersetzbarkeit der Polysaccharid-Hauptkette und der Anbindung der polymerisierbaren Vinyleinheiten an diese über photospaltbare Gruppen. Die gute Wasserlöslichkeit der Vernetzermoleküle stellt einen vielversprechenden Ansatz zur Beladung solcher Mikrogele mit funktionellen hydrophilen Substanzen bereits während der Partikelsynthese dar. Ein weiteres Konzept zur Beladung von Mikrogelen basiert auf der Verwendung von photolabilen Wirkstoff-Mikrogel Konjugaten. In einem ersten Schritt zur Realisierung solch eines Ansatzes wurde ein neuartiges Monomer entwickelt. Hierbei wurde Doxorubicin über eine lichtspaltbare Gruppe an eine polymerisierbare Methacrylatgruppe angebunden. Für die Freisetzung hydrophober Substanzen in wässrigen Medien wurden polymere Photolack-Nanopartikel entwickelt, welche sich unter Bestrahlung in Wasser zersetzen. Die lichtinduzierte Änderung der Hydrophobizität des Polymers ermöglichte die Freisetzung von Nilrot durch das Auflösen der partikulären Struktur. Ein interessanter Ansatz zur Verhinderung einer unkontrollierten Freisetzung funktioneller Substanzen aus Mikrogelen ist die Einführung einer stimuliresponsiven Schale. In diesem Kontext wurden Untersuchungen zur Bildung von nicht-stimulisensitiven Schalen um vorgefertigte Mikrogelkerne und zur Synthese von Hydrogelkernen in vorgefertigten polymeren Schalen (Nanokapseln) durchgeführt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The horizontal and vertical system neurons (HS and VS cells) are part of a conserved set of lobula plate giant neurons (LPGNs) in the optic lobes of the adult brain. Structure and physiology of these cells are well known, predominantly from studies in larger Dipteran flies. Our knowledge about the ontogeny of these cells is limited and stems predominantly from laser ablation studies in larvae of the house fly Musca domestica. These studies suggested that the HS and VS cells stem from a single precursor, which, at least in Musca, has not yet divided in the second larval instar. A regulatory mutation (In(1)omb[H31]) in the Drosophila gene optomotor-blind (omb) leads to the selective loss of the adult HS and VS cells. This mutation causes a transient reduction in omb expression in what appears to be the entire optic lobe anlage (OLA) late in embryogenesis. Here, I have reinitiated the laser approach with the goal of identifying the presumptive embryonic HS/VS precursor cell in Drosophila. The usefulness of the laser ablation approach which has not been applied, so far, to cells lying deep within the Drosophila embryo, was first tested on two well defined embryonic sensory structures, the olfactory antenno-maxillary complex (AMC) and the light-sensitive Bolwing´s organ (BO). In the case of the AMC, the efficiency of the ablation procedure was demonstrated with a behavioral assay. When both AMCs were ablated, the response to an attractive odour (n-butanol) was clearly reduced. Interestingly, the larvae were not completely unresponsive but had a delayed response kinetics, indicating the existence of a second odour system. BO will be a useful test system for the selectivity of laser ablation when used at higher spatial resolution. An omb-Gal4 enhancer trap line was used to visualize the embryonic OLA by GFP fluorescence. This fluorescence allowed to guide the laser beam to the relevant structure within the embryo. The success of the ablations was monitored in the adult brain via the enhancer trap insertion A122 which selectively visualizes the HS and VS cell bodies. Due to their tight clustering, individual cells could not be identified in the embryonic OLA by conventional fluorescence microscopy. Nonetheless, systematic ablation of subdomains of the OLA allowed to localize the presumptive HS/VS precursor to a small area within the OLA, encompassing around 10 cells. Future studies at higher resolution should be able to identify the precursor as (an) individual cell(s). Most known lethal omb alleles do not complement the HS/VS phenotype of the In(1)omb[H31] allele. This is the expected behaviour of null alleles. Two lethal omb alleles that had been isolated previously by non-complementation of the omb hypomorphic allele bifid, have been reported, however, to complement In(1)omb[H31]. This report was based on low resolution paraffin histology of adult heads. Four mutations from this mutagenesis were characterized here in more detail (l(1)omb[11], l(1)omb[12], l(1)omb[13], and l(1)omb[15]). Using A122 as marker for the adult HS and VS cells, I could show, that only l(1)omb[11] can partly complement the HS/VS cell phenotype of In(1)omb[H31]. In order to identify the molecular lesions in these mutants, the exons and exon/intron junctions were sequenced in PCR-amplified material from heterozygous flies. Only in two mutants could the molecular cause for loss of omb function be identified: in l(1)omb[13]), a missense mutation causes the exchange of a highly conserved residue within the DNA-binding T-domain; in l(1)omb[15]), a nonsense mutation causes a C-terminal truncation. In the other two mutants apparently regulatory regions or not yet identified alternative exons are affected. To see whether mutant OMB protein in the missense mutant l(1)omb[13] is affected in DNA binding, electrophoretic shift assays on wildtype and mutant T-domains were performed. They revealed that the mutant no longer is able to bind the consensus palindromic T-box element.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Dissertation beschreibt die Darstellung und Charakterisierung von neuartigen, amphiphilen Carbazol- und Fluoren-(co)-polymeren, die infolge ihres strukturellen Aufbaus sowohl selbstorganisierende als auch optoelektronische Eigenschaften kombinierten. Zum einen wurden Kammpolymere mit konjugierten, steifen Rückgraten und flexiblen sowie konformativ schaltbaren Polyelektrolytseitenketten dargestellt und auf eine pH-abhängige Selbstorganisation in Lösung und an Oberflächen untersucht. Des Weiteren wurden neutrale, methanollösliche Polyfluorene synthetisiert, die in Kombination mit einem unpolaren Polyindenofluorenderivat zum Aufbau mehrschichtiger PLEDs mittels nasschemischer Verfahren eingesetzt wurden. Zum anderen fand die Synthese von amphiphilen Polyfluorenen statt, die als Emulgatoren zur Stabilisierung von inversen Emulsionen eingesetzt wurden. Dabei konnten mit Hilfe eines bereits für die Darstellung von anorganisch-organischen Kern-Schale-Partikeln etablierten in situ-Verfahrens formanisotrope, kristalline Zinkoxidkerne mit konjugierter Polymerhülle erhalten werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small, smaller, nano - it is a milestone in the development of new materials and technologies. Nanoscience is now present in our daily lives: in the car industry with self-cleaning surfaces, in medicine with cancer therapies, even our clothes and cosmetics utilize nanoparticles. The number and variety of applications has been growing fast in recent years, and the possibilities seem almost infinite. Nanoparticles made of inorganic materials have found applications in new electronic technologies, and organic nanomaterials have been added to resins to produce very strong but light weight materials.rnThis work deals with the combination of organic and inorganic materials for the fabrication of new, functional hybrid systems. For that purpose, block copolymers were made with a long, solubility-enhancing and semiconducting block, and a short anchor block. They were synthesized by either RAFT polymerization or Siegrist polycondensation. For the second block, an active ester was grafted on and subsequently reacted with the anchor molecules in a polymer analogue reaction. The resulting block copolymers had different properties; poly(para-phenylene vinylene) showed self-assembly in organic solvents, which resulted in gelling of the solution. The fibers from a diluted solution were visible through microscopy. When polymer chains were attached to TiO2 nanorods, the hybrids could be integrated into polymer fibers. A light-induced charge separation was demonstrated through KPFM. The polymer charged positively and the charge could travel along the fibers for several hundred nanometers. Polymers made via RAFT polymerization were based on poly(vinyltriphenylamine). Ruthenium chromophores which carried anchor groups were attached to the second block. These novel block copolymers were then attached to ZnO nanorods. A light-induced charge separation was also demonstrated in this system. The ability to disperse inorganic nanoparticles within the film is another advantage of these block copolymers. This was shown with the example of CdSe tetrapods. Poly(vinyltriphenylamine dimer) with disulfide anchor groups was attached to CdSe tetrapods. These four-armed nanoparticles are supposed to show very high charge transport. A polymer without anchor groups was also mixed with the tetrapods in order to investigate the influence of the anchor groups. It was shown that without them no good films were formed and the tetrapods aggregated heavily in the samples. Additionally, a large difference in the film qualities and the aggregation of the tetrapods was found in the sample of the polymer with anchor groups, dependent on the tetrapod arm length and the polymer loading. These systems are very interesting for hybrid solar cells. This work also illustrates similar systems with quantum dots. The influence of the energy level of the polymer on the hole transport from the polymer to the quantum dots, as well as on the efficiency of QLEDs was studied. For this purpose two different polymers were synthesized with different HOMO levels. It was clearly shown that the polymer with the adjusted lower HOMO level had a better hole injection to the quantum dots, which resulted in more efficient light emitting diodes.rnThese systems all have in common the fact that novel, and specially designed polymers, were attached to inorganic nanocrystals. All of these hybrid materials show fascinating properties, and are helpful in the research of new materials for optoelectronic applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intraflagellar transport (IFT) is required for the assembly and maintenance of cilia. In this study we analyzed the subcellular localization of IFT proteins in retinal cells by correlative high-resolution immunofluorescence and immunoelectron microscopy. The rod photoreceptor cell was used as a model system to analyze protein distribution in cilia. To date the expression of IFT proteins has been described in the ciliary region without deciphering the precise spatial and temporal subcellular localization of IFT proteins, which was the focus of my work. rnThe establishment of the pre-embedding immunoelectron method was an important first step for the present doctoral thesis. Results of this work reveal the differential localization of IFT20, IFT52, IFT57, IFT88, IFT140 in sub-ciliary compartments and also their presence in non-ciliary compartments of retinal photoreceptor cells. Furthermore, the localization of IFT20, IFT52 and IFT57 in dendritic processes of non-ciliated neurons indicates that IFT protein complexes also operate in non-ciliated cells and may participate in intracellular vesicle trafficking in eukaryotic cells in general.rnIn addition, we have investigated the involvement of IFT proteins in the ciliogenesis of vertebrate photoreceptor cilia. Electron microscopy analyses revealed six morphologically distinct stages. The first stages are characterized by electron dense centriolar satellites and a ciliary vesicle, while the formation of a ciliary shaft and of the light sensitive outer segment disks are features of the later stages. IFT proteins were expressed during all stages of photoreceptor cell development and found to be associated with the ciliary apparatus. In addition to the centriole and basal body IFT proteins are present in the photoreceptor cytoplasm, associated with centriolar satellites, post-Golgi vesicles and with the ciliary vesicle. Therewith the data provide an evidence for the involvement of IFT proteins during ciliogenesis, including the formation of the ciliary vesicle and the elongation of the primary cilium of photoreceptor cells. Moreover, the cytoplasmic localization of IFT proteins in the absence of a ciliary shaft in early stages of ciliogenesis indicates roles of IFT proteins beyond their well-established function for IFT in mature cilia and flagella. rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structure characterization of nanocrystalline intermediates and metastable phases is of primary importance for a deep understanding of synthetic processes undergoing solid-to-solid state phase transitions. Understanding the evolution from the first nucleation stage to the final synthetic product supports not only the optimization of existing processes, but might assist in tailoring new synthetic paths. A systematic investigation of intermediates and metastable phases is hampered because it is impossible to produce large crystals and only in few cases a pure synthetic product can be obtained. Structure investigation by X-ray powder diffraction methods is still challenging on nanoscale, especially when the sample is polyphasic. Electron diffraction has the advantage to collect data from single nanoscopic crystals, but is limited by data incompleteness, dynamical effects and fast deterioration of the sample under the electron beam. Automated diffraction tomography (ADT), a recently developed technique, making possible to collect more complete three-dimensional electron diffraction data and to reduce at the same time dynamical scattering and beam damage, thus allowing to investigate even beam sensitive materials (f.e. hydrated phases and organics). At present, ADT is the only technique able to deliver complete three-dimensional structural information from single nanoscopic grains, independently from other surrounding phases. Thus, ADT is an ideal technique for the study of on-going processes where different phases exist at the same time and undergo several structural transitions. In this study ADT was used as the main technique for structural characterization for three different systems and combined subsequently with other techniques, among which high-resolution transmission electron microscopy (HRTEM), cryo-TEM imaging, X-ray powder diffraction (XRPD) and energy disperse X-ray spectroscopy (EDX).rnAs possible laser host materials, i.e. materials with a broad band emission in the near-infrared region, two unknown phases were investigated in the ternary oxide system M2O-Al2O3-WO3 (M = K, Na). Both phases exhibit low purity as well as non-homogeneous size distribution and particle morphology. The structures solved by ADT are also affected by pseudo-symmetry. rnSodium titanate nanotubes and nanowires are both intermediate products in the synthesis of TiO2 nanorods which are used as additives to colloidal TiO2 film for improving efficiency of dye-sensitized solar cells (DSSC). The structural transition from nantubes to nanowires was investigated in a step by step time-resolved study. Nanowires were discovered to consist of a hitherto unknown phase of sodium titanate. This new phase, typically affected by pervasive defects like mutual layer shift, was structurally determined ab-initio on the basis of ADT data. rnThe third system is related with calcium carbonate nucleation and early crystallization. The first part of this study is dedicated to the extensive investigations of calcium carbonate formation in a step by step analysis, up to the appearance of crystalline individua. The second part is dedicated to the structure determination by ADT of the first-to-form anhydrated phase of CaCO3: vaterite. An exhaustive structure analysis of vaterite had previously been hampered by diffuse scattering, extra periodicities and fast deterioration of the material under electron irradiation. rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conjugated polymers are macromolecules that possess alternating single and double bonds along the main chain. These polymers combine the optoelectronic properties of semiconductors with the mechanical properties and processing advantages of plastics. In this thesis we discuss the synthesis, characterization and application of polyphenylene-based materials in various electronic devices. Poly(2,7-carbazole)s have the potential to be useful as blue emitters, but also as donor materials in solar cells due to their better hole-accepting properties. However, it is associated with two major drawbacks (1) the emission maximum occurs at 421 nm where the human eye is not very sensitive and (2) the 3- and 6- positions of carbazole are susceptible to chemical or electrochemical degradation. To overcome these problems, the ladder-type nitrogen-bridged polymers are synthesized. The resulting series of polymers, nitrogen-bridged poly(ladder-type tetraphenylene), nitrogen-bridged poly(ladder-type pentaphenylene), nitrogen-bridged poly(ladder-type hexaphenylene) and its derivatives are discussed in the light of photophysical and electrochemical properties and tested in PLEDs, solar cell, and OFETs. A promising trend which has emerged in recent years is the use of well defined oligomers as model compounds for their corresponding polymers. However, the uses of these molecules are many times limited by their solubility and one has to use vapor deposition techniques which require high vacuum and temperature and cannot be used for large area applications. One solution to this problem is the synthesis of small molecules having enough alkyl chain on the backbone so that they can be solution or melt processed and has the ability to form thin films like polymers as well as retain the high ordered structure characteristics of small molecules. Therefore, in the present work soluble ladderized oligomers based on thiophene and carbazole with different end group were made and tested in OFET devices. Carbazole is an attractive raw material for the synthesis of dyes since it is cheap and readily available. Carbazoledioxazine, commercially known as violet 23 is a representative compound of dioxazine pigments. As part of our efforts into developing cheap alternatives to violet 23, the synthesis and characterization of a new series of dyes by Buchwald-type coupling of 3-aminocarbazole with various isomers of chloroanthraquinone are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of oligo-phenylene dendronised conjugated polymers was prepared. The divergent synthetic approach adopted allowed for the facile synthesis of a range of dendronised monomers from a common intermediate, e.g. first and second generation fluorene. Only the polymerisation of the first generation and alkylarylamine substituted dendronised fluorene monomers yielded high molecular weight materials, attributed to the low solubility of the remaining dendronised monomers. The alkylarylamine substituted dendronised poly(fluorene) was incorporated into an organic light emitting diode (OLED) and exhibited an increased colour stability in air compared to other poly(fluorenes). The concept of dendronisation was extended to poly(fluorenone), a previously insoluble material. The synthesis of the first soluble poly(fluorenone) was achieved by the incorporation of oligo-phenylene dendrons at the 4-position of fluorenone. The dendronisation of fluorenone allowed for a polymer with an Mn of 4.1 x 104 gmol-1 to be prepared. Cyclic voltammetry of the dendronised poly(fluorenone) showed that the electron affinity of the polymer was high and that the polymer is a promising n-type material. A dimer and trimer of indenofluorene (IF) were prepared from the monobromo IF. These oligomers were investigated by 2-dimensional wide angle x-ray spectroscopy (2D-WAXS), polarised optical microscopy (POM) and dielectric spectroscopy, and found to form highly ordered smetic phases. By attaching perylene dye as the end-capper on the IF oligomers, molecules that exhibited efficient Förster energy transfer were obtained. Indenofluorene monoketone, a potential defect structure for IF based OLED’s, was synthesised. The synthesis of this model defect structure allowed for the long wavelength emission in OLED’s to be identified as ketone defects. The long wavelength emission from the indenofluorene monoketone was found to be concentration dependent, and suggests that aggregate formation is occurring. An IF linked hexa-peri-hexabenzocoronene (HBC) dimer was synthesised. The 2D-WAXS images of this HBC dimer demonstrate that the molecule exhibits intercolumnar organisation perpendicular to the extrusion direction. POM images of mixtures of the HBC dimer mixed with an HBC with a low isotropic temperature demonstrated that the HBC dimer is mixing with the isotropic HBC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is based on three main studies, all dealing with structure-property investigation of semicrystalline polyolefin-based composites. Low density poly(ethylene) (LDPE) and isotactic poly(propylene) (iPP) were chosen as parts of the composites materials and they were investigated either separately (as homoploymers), either in blend systems with the composition LDPE/iPP 80/20 or as filled matrix with layered silicate (montmorillonite). The beneficial influence of adding ethylene-co-propylene polymer of amorphous nature, to low density poly(ethylene)/isotactic poly(propylene) (80/20) blend is demonstrated. This effect is expressed by the major improvement of mechanical properties of ternary blends as examined at a macroscopic size scale by means of tensile measurements. The structure investigation also reveals a clear dependence of the morphology on adding ethylene-copropylene polymer. Both the nature and the content of ethylene-co-propylene polymer affect structure and properties. It is further demonstrated that the extent of improvement in mechanical properties is to be related to the molecular details of the compatibilizer. Combination of high molecular weight and high ethylene content is appropriate for the studied system where the poly(ethylene) plays the role of matrix. A new way to characterize semicrystalline systems by means of Brillouin spectroscopy is presented in this study. By this method based on inelastic light scattering, we were able to measure the high frequency elastic constant (c11) of the two microphases in the case where the spherulites size is exhibit size larger than the size of the probing phonon wavelength. In this considered case, the sample film is inhomogeneous over the relevant length scales and there is an access to the transverse phonon in the crystalline phase yielding the elastic constant c44 as well. Isotactic poly(propylene) is well suited for this type of investigation since its morphology can be tailored through different thermal treatment from the melt. Two distinctly different types of films were used; quenched (low crystallinity) and annealed (high crystallinity). The Brillouin scattering data are discussed with respect to the spherulites size, lamellae thickness, long period, crystallinity degree and well documented by AFM images. The structure and the properties of isotactic poly(propylene) matrix modified by inorganic layered silicate, montmorillonite, are discussed with respect to the clay content. Isotactic poly(propylene)-graft-maleic anhydride was used as compatibilizer. It is clearly demonstrated that the property enhancement is largely due to the ability of layered silicate to exfoliate. The intimate dispersion of the nanometer-thick silicate result from a delicate balance of the content ratio between the isotactic poly(propylene)-graft-maleic anhydride compatibilizer and the inorganic clay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since conjugated polymers, i.e. polymers with spatially extended pi-bonding system have offered unique physical properties, unobtainable for conventional polymers, significant research efforts directed to better understanding of their chemistry, physics and engineering have been undertaken in the past two and half decades. In this thesis we discuss the synthesis, characterisation and investigation of conjugated semiconducting organic materials for electronic applications. Owing to the versatile properties of metal-organic hybrid materials, there is significant promise that these materials can find use in optical or electronic devices in the future. In addressing this issue, the synthesis of bisthiazol-2-yl-amine (BTA) based polymers is attempted and their metallation is investigated. The focus of this work has been to examine whether the introduction of coordinating metal ions onto the polymer backbone can enhance the conductivity of the material. These studies can provide a basis for understanding the photophysical properties of metal-organic polymers based on BTA. In their neutral (undoped) form conjugated polymers are semiconductors and can be used as active components of plastics electronics such as polymer light-emitting diodes, polymer lasers, photovoltaic cells, field-effect transistors, etc. Toward this goal, it is an objective of the study to synthesize and characterize new classes of luminescent polymeric materials based on anthracene and phenanthrene moieties. A series of materials based on polyphenylenes and poly(phenyleneethynylene)s with 9,10-anthrylene subunits are not only presented but the synthesis and characterization of step-ladder and ladder poly(p-phenylene-alt-anthrylene)s containing 9,10-anthrylene building groups within the main chain are also explored. In a separate work, a series of soluble poly-2,7- and 3,6-phenanthrylenes are synthesized. This can enable us to do a systematic investigation into the optical and electronic properties of PPP-like versus PPV-like. Besides, the self-organization of 3,6-linked macrocyclic triphenanthrylene has been investigated by 2D wide-angle X-ray scattering experiments performed on extruded filaments in solution and in the bulk. Additionally, from the concept that donor-acceptor materials can induce efficient electron transfer, the covalent incorporation of perylene tetracarboxydiimide (PDI) into one block of a poly(2,7-carbazole) (PCz)-based diblock copolymer and 2,5-pyrrole based on push-pull type material are achieved respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis deals with complex materials, which were obtained by self-assembly of monodisperse colloidal particles, also called colloidal crystallization. Two main fields of interest were investigated, the first dealing with the fabrication of colloidal monolayers and nanostructures, which derive there from. The second turned the focus on the phononic properties of colloidal particles, crystals, and glasses. For the fabrication of colloidal monolayers a method is introduced, which is based on the sparse distribution of dry colloidal particles on a parent substrate. In the ensuing floating step the colloidal monolayer assembles readily at the three-phase-contact line, giving a 2D hexagonally ordered film under the right conditions. The unique feature of this fabrication process is an anisotropic shrinkage, which occurs alongside with the floating step. This phenomenon is exploited for the tailored structuring of colloidal monolayers, leading to designed hetero-monolayers by inkjet printing. Furthermore, the mechanical stability of the floating monolayers allows the deposition on hydrophobic substrates, which enables the fabrication of ultraflat nanostructured surfaces. Densely packed arrays of crescent shaped nanoparticles have also been synthesized. It is possible to stack those arrays in a 3D manner allowing to mutually orientate the individual layers. In a step towards 3D mesoporous materials a methodology to synthesize hierarchically structured inverse opals is introduced. The deposition of colloidal particles in the free voids of a host inverse opal allows for the fabrication of composite inverse opals on two length scales. The phononic properties of colloidal crystals and films are characterized by Brillouin light scattering (BLS). At first the resonant modes of colloidal particles consisting of polystyrene, a copolymer of methylmethacrylate and butylacrylate, or of a silica core-PMMA shell topography are investigated, giving insight into their individual mechanical properties. The infiltration of colloidal films with an index matching liquid allows measuring the phonon dispersion relation. This leads to the assignment of band gaps to the material under investigation. Here, two band gaps could be found, one originating from the fcc order in the colloidal crystal (Bragg gap), the other stemming from the vibrational eigenmodes of the colloidal particles (hybridization gap).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Materials that can mold the flow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (<1 µm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons.rnThe experimental part of this work is divided into three chapters: Chapter 4 is concerned with the localized mechanical waves in the individual spherical colloidal particles, i.e., with their resonance- or eigenvibrations. The investigation of these vibrations with regard to the environment of the particles, their chemical composition, and the influence of temperature on nanoscopically structured colloids allows novel insights into the physical properties of colloids at small length scales. Furthermore, some general questions concerning light scattering on such systems, in dispute so far, are convincingly addressed.rnChapter 5 is a study of the traveling of mechanical waves in colloidal systems, consisting of ordered and disordered colloids in liquid or elastic matrix. Such systems show acoustic band gaps, which can be explained geometrically (Bragg gap) or by the interaction of the acoustic band with the eigenvibrations of the individual spheres (hybridization gap).rnWhile the latter has no analogue in photonics, the presence of strong phonon scatterers, when a large elastic mismatch between the composite components exists, can largely impact phonon propagation in analogy to strong multiple light scattering systems. The former is exemplified in silica based phononic structures that opens the door to new ways of sound propagation manipulation.rnChapter 6 describes the first measurement of the elastic moduli in newly fabricated by physical vapor deposition so-called ‘stable organic glasses’. rnIn brief, this thesis explores novel phenomena in colloid-based hypersonic phononic structures, utilizing a versatile microfabrication technique along with different colloid architectures provided by material science, and applying a non-destructive optical experimental tool to record dispersion diagrams.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant interest in nanotechnology, is stimulated by the fact that materials exhibit qualitative changes of properties when their dimensions approach ”finite-sizes”. Quantization of electronic, optical and acoustic energies at the nanoscale provides novel functions, with interests spanning from electronics and photonics to biology. The present dissertation involves the application of Brillouin light scattering (BLS) to quantify and utilize material displacementsrnfor probing phononics and elastic properties of structured systems with dimensions comparable to the wavelength of visible light. The interplay of wave propagation with materials exhibiting spatial inhomogeneities at sub-micron length scales provides information not only about elastic properties but also about structural organization at those length scales. In addition the vector nature of q allows, for addressing the directional dependence of thermomechanical properties. To meet this goal, one-dimensional confined nanostructures and a biological system possessing high hierarchical organization were investigated. These applications extend the capabilities of BLS from a characterization tool for thin films to a method for unravelingrnintriguing phononic properties in more complex systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heusler intermetallics Mn$_{2}Y$Ga and $X_{2}$MnGa ($X,Y$=Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials and design future ones.rnrnSynchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specific information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange.rnrnFundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. rnrnChapters include an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of $X_2$MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn$_{2}Y$Ga to the logical Mn$_3$Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a “Think Tank” for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co$_2$FeSi (Appendix B).