7 resultados para Large-volume Quartz Latites

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ivrea Zone in northern Italy has been the focus of numerous petrological, geochemical and structural studies. It is commonly inferred to represent an almost complete section through the mid to lower continental crust, in which metamorphism and partial melting of the abundant metapelites was the result of magmatic underplating by a large volume of mantle-derived magma. This study concerns amphibolite and granulite facies metamorphism in the Ivrea Zone with focus on metapelites and metapsammites/metagreywackes from Val Strona di Omegna and metapelites from Val Sesia and Val Strona di Postua, with the aim to better constrain their metamorphic evolution as well as their pressure and temperature conditions via phase equilibria modelling.rnrnIn Val Strona di Omegna, the metapelites show a structural and mineralogical change from mica-schists with the common assemblage bi-mu-sill-pl-q-ilm ± liq at the lowest grades, through metatexitic migmatites (g-sill-bi-ksp-pl-q-ilm-liq) at intermediate grades, to complex diatexitic migmatites (g-sill-ru-bi-ksp-pl-q-ilm-liq) at the highest grades. Within this section several mappable isograds occur, including the first appearance of K-feldspar in the metapelites, the first appearance of orthopyroxene in the metabasites and the disappearance of prograde biotite from the metapelites. The inferred onset of partial melting in the metapelites occurs around Massiola. The prograde suprasolidus evolution of the metapelites is consistent with melting via the breakdown of first muscovite then biotite. Maximum modelled melt fractions of 30–40 % are predicted at the highest grade. The regional metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of 3.5–6.5 kbar at T = 650–730 °C to P > 9 kbar at T > 900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher (around 100 °C) than those of most previous studies. In Val Sesia and Val Strona di Postua to the south the exposure is more restricted. P–T estimates for the metapelites are 750–850 °C and 5–6.5 kbar in Val Sesia and approximately 800–900 °C and 5.5–7 kbar in Val Strona di Postua. These results show similar temperatures but lower pressure than metapelites in Val Strona di Omegna. Metapelites in Val Sesia in contact with the Mafic Complex exhibit a metatexitic structure, while in Val Strona di Postua diatexitic structures occur. Further, metapelites at the contact with the Mafic Complex contain cordierite (± spinel) that overprint the regional metamorphic assemblages and are interpreted to have formed during contact metamorphism related to intrusion of the Mafic Complex. The lower pressures in the high-grade rocks in Val Sesia and Val Strona di Postua are consistent with some decompression from the regional metamorphic peak prior to the intrusion of the Mafic Complex, suggesting the rocks followed a clockwise P–T path. In contrast, the metapelites in Val Strona di Omegna, especially in the granulite facies, do not contain any cordierite or any evidence for a contact metamorphic overprint. The extrapolated granulite facies mineral isograds are cut by the rocks of the Mafic Complex to the south. Therefore, the Mafic Complex cannot have caused the regional metamorphism and it is unlikely that the Mafic Complex occurs in Val Strona di Omegna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid Elektrodenmaterialien (HEM) sind der Schlüssel zu grundlegenden Fortschritten in der Energiespeicherung und Systemen zur Energieumwandlung, einschließlich Lithium-Ionen-Batterien (LiBs), Superkondensatoren (SCs) und Brennstoffzellen (FCs). Die faszinierenden Eigenschaften von Graphen machen es zu einem guten Ausgangsmaterial für die Darstellung von HEM. Jedoch scheitern traditionelle Verfahren zur Herstellung von Graphen-HEM (GHEM) scheitern häufig an der fehlenden Kontrolle über die Morphologie und deren Einheitlichkeit, was zu unzureichenden Grenzflächenwechselwirkungen und einer mangelhaften Leistung des Materials führt. Diese Arbeit konzentriert sich auf die Herstellung von GHEM über kontrollierte Darstellungsmethoden und befasst sich mit der Nutzung von definierten GHEM für die Energiespeicherung und -umwandlung. Die große Volumenausdehnung bildet den Hauptnachteil der künftigen Lithium-Speicher-Materialien. Als erstes wird ein dreidimensionaler Graphen Schaumhybrid zur Stärkung der Grundstruktur und zur Verbesserung der elektrochemischen Leistung des Fe3O4 Anodenmaterials dargestellt. Der Einsatz von Graphenschalen und Graphennetzen realisiert dabei einen doppelten Schutz gegen die Volumenschwankung des Fe3O4 bei dem elektrochemischen Prozess. Die Leistung der SCs und der FCs hängt von der Porenstruktur und der zugänglichen Oberfläche, beziehungsweise den katalytischen Stellen der Elektrodenmaterialien ab. Wir zeigen, dass die Steuerung der Porosität über Graphen-basierte Kohlenstoffnanoschichten (HPCN) die zugängliche Oberfläche und den Ionentransport/Ladungsspeicher für SCs-Anwendungen erhöht. Desweiteren wurden Stickstoff dotierte Kohlenstoffnanoschichten (NDCN) für die kathodische Sauerstoffreduktion (ORR) hergestellt. Eine maßgeschnittene Mesoporosität verbunden mit Heteroatom Doping (Stickstoff) fördert die Exposition der aktiven Zentren und die ORR-Leistung der metallfreien Katalysatoren. Hochwertiges elektrochemisch exfoliiertes Graphen (EEG) ist ein vielversprechender Kandidat für die Darstellung von GHEM. Allerdings ist die kontrollierte Darstellung von EEG-Hybriden weiterhin eine große Herausforderung. Zu guter Letzt wird eine Bottom-up-Strategie für die Darstellung von EEG Schichten mit einer Reihe von funktionellen Nanopartikeln (Si, Fe3O4 und Pt NPs) vorgestellt. Diese Arbeit zeigt einen vielversprechenden Weg für die wirtschaftliche Synthese von EEG und EEG-basierten Materialien.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract In this study structural and finite strain data are used to explore the tectonic evolution and the exhumation history of the Chilean accretionary wedge. The Chilean accretionary wedge is part of a Late Paleozoic subduction complex that developed during subduction of the Pacific plate underneath South America. The wedge is commonly subdivided into a structurally lower Western Series and an upper Eastern Series. This study shows the progressive development of structures and finite strain from the least deformed rocks in the eastern part of the Eastern Series of the accretionary wedge to higher grade schist of the Western Series at the Pacific coast. Furthermore, this study reports finite-strain data to quantify the contribution of vertical ductile shortening to exhumation. Vertical ductile shortening is, together with erosion and normal faulting, a process that can aid the exhumation of high-pressure rocks. In the east, structures are characterized by upright chevron folds of sedimentary layering which are associated with a penetrative axial-plane foliation, S1. As the F1 folds became slightly overturned to the west, S1 was folded about recumbent open F2 folds and an S2 axial-plane foliation developed. Near the contact between the Western and Eastern Series S2 represents a prominent subhorizontal transposition foliation. Towards the structural deepest units in the west the transposition foliation became progressively flat lying. Finite-strain data as obtained by Rf/Phi and PDS analysis in metagreywacke and X-ray texture goniometry in phyllosilicate-rich rocks show a smooth and gradual increase in strain magnitude from east to west. There are no evidences for normal faulting or significant structural breaks across the contact of Eastern and Western Series. The progressive structural and strain evolution between both series can be interpreted to reflect a continuous change in the mode of accretion in the subduction wedge. Before ~320-290 Ma the rocks of the Eastern Series were frontally accreted to the Andean margin. Frontal accretion caused horizontal shortening and upright folds and axial-plane foliations developed. At ~320-290 Ma the mode of accretion changed and the rocks of the Western Series were underplated below the Andean margin. This basal accretion caused a major change in the flow field within the wedge and gave rise to vertical shortening and the development of the penetrative subhorizontal transposition foliation. To estimate the amount that vertical ductile shortening contributed to the exhumation of both units finite strain is measured. The tensor average of absolute finite strain yield Sx=1.24, Sy=0.82 and Sz=0.57 implying an average vertical shortening of ca. 43%, which was compensated by volume loss. The finite strain data of the PDS measurements allow to calculate an average volume loss of 41%. A mass balance approximates that most of the solved material stays in the wedge and is precipitated in quartz veins. The average of relative finite strain is Sx=1.65, Sy=0.89 and Sz=0.59 indicating greater vertical shortening in the structurally deeper units. A simple model which integrates velocity gradients along a vertical flow path with a steady-state wedge is used to estimate the contribution of deformation to ductile thinning of the overburden during exhumation. The results show that vertical ductile shortening contributed 15-20% to exhumation. As no large-scale normal faults have been mapped the remaining 80-85% of exhumation must be due to erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stylolites are rough paired surfaces, indicative of localized stress-induced dissolution under a non-hydrostatic state of stress, separated by a clay parting which is believed to be the residuum of the dissolved rock. These structures are the most frequent deformation pattern in monomineralic rocks and thus provide important information about low temperature deformation and mass transfer. The intriguing roughness of stylolites can be used to assess amount of volume loss and paleo-stress directions, and to infer the destabilizing processes during pressure solution. But there is little agreement on how stylolites form and why these localized pressure solution patterns develop their characteristic roughness.rnNatural bedding parallel and vertical stylolites were studied in this work to obtain a quantitative description of the stylolite roughness and understand the governing processes during their formation. Adapting scaling approaches based on fractal principles it is demonstrated that stylolites show two self affine scaling regimes with roughness exponents of 1.1 and 0.5 for small and large length scales separated by a crossover length at the millimeter scale. Analysis of stylolites from various depths proved that this crossover length is a function of the stress field during formation, as analytically predicted. For bedding parallel stylolites the crossover length is a function of the normal stress on the interface, but vertical stylolites show a clear in-plane anisotropy of the crossover length owing to the fact that the in-plane stresses (σ2 and σ3) are dissimilar. Therefore stylolite roughness contains a signature of the stress field during formation.rnTo address the origin of stylolite roughness a combined microstructural (SEM/EBSD) and numerical approach is employed. Microstructural investigations of natural stylolites in limestones reveal that heterogeneities initially present in the host rock (clay particles, quartz grains) are responsible for the formation of the distinctive stylolite roughness. A two-dimensional numerical model, i.e. a discrete linear elastic lattice spring model, is used to investigate the roughness evolving from an initially flat fluid filled interface induced by heterogeneities in the matrix. This model generates rough interfaces with the same scaling properties as natural stylolites. Furthermore two coinciding crossover phenomena in space and in time exist that separate length and timescales for which the roughening is either balanced by surface or elastic energies. The roughness and growth exponents are independent of the size, amount and the dissolution rate of the heterogeneities. This allows to conclude that the location of asperities is determined by a polimict multi-scale quenched noise, while the roughening process is governed by inherent processes i.e. the transition from a surface to an elastic energy dominated regime.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within this work, a particle-polymer surface system is studied with respect to the particle-surface interactions. The latter are governed by micromechanics and are an important aspect for a wide range of industrial applications. Here, a new methodology is developed for understanding the adhesion process and measure the relevant forces, based on the quartz crystal microbalance, QCM. rnThe potential of the QCM technique for studying particle-surface interactions and reflect the adhesion process is evaluated by carrying out experiments with a custom-made setup, consisting of the QCM with a 160 nm thick film of polystyrene (PS) spin-coated onto the quartz and of glass particles, of different diameters (5-20µm), deposited onto the polymer surface. Shifts in the QCM resonance frequency are monitored as a function of the oscillation amplitude. The induced frequency shifts of the 3rd overtone are found to decrease or increase, depending on the particle-surface coupling type and the applied oscillation (frequency and amplitude). For strong coupling the 3rd harmonic decreased, corresponding to an “added mass” on the quartz surface. However, positive frequency shifts are observed in some cases and are attributed to weak-coupling between particle and surface. Higher overtones, i.e. the 5th and 7th, were utilized in order to derive additional information about the interactions taking place. For small particles, the shift for specific overtones can increase after annealing, while for large particle diameters annealing causes a negative frequency shift. The lower overtones correspond to a generally strong-coupling regime with mainly negative frequency shifts observed, while the 7th appears to be sensitive to the contact break-down and the recorded shifts are positive.rnDuring oscillation, the motion of the particles and the induced frequency shift of the QCM are governed by a balance between inertial forces and contact forces. The adherence of the particles can be increased by annealing the PS film at 150°C, which led to the formation of a PS meniscus. For the interpretation, the Hertz, Johnson-Kendall-Roberts, Derjaguin-Müller-Toporov and the Mindlin theory of partial slip are considered. The Mindlin approach is utilized to describe partial slip. When partial slip takes place induced by an oscillating load, a part of the contact ruptures. This results in a decrease of the effective contact stiffness. Additionally, there are long-term memory effects due to the consolidation which along with the QCM vibrations induce a coupling increase. However, the latter can also break the contact, lead to detachment and even surface damage and deformation due to inertia. For strong coupling the particles appear to move with the vibrations and simply act as added effective mass leading to a decrease of the resonance frequency, in agreement with the Sauerbrey equation that is commonly used to calculate the added mass on a QCM). When the system enters the weak-coupling regime the particles are not able to follow the fast movement of the QCM surface. Hence, they effectively act as adding a “spring” with an additional coupling constant and increase the resonance frequency. The frequency shift, however, is not a unique function of the coupling constant. Furthermore, the critical oscillation amplitude is determined, above which particle detach. No movement is detected at much lower amplitudes, while for intermediate values, lateral particle displacement is observed. rnIn order to validate the QCM results and study the particle effects on the surface, atomic force microscopy, AFM, is additionally utilized, to image surfaces and measure surface forces. By studying the surface of the polymer film after excitation and particle removal, AFM imaging helped in detecting three different meniscus types for the contact area: the “full contact”, the “asymmetrical” and a third one including a “homocentric smaller meniscus”. The different meniscus forms result in varying bond intensity between particles and polymer film, which could explain the deviation between number of particles per surface area measured by imaging and the values provided by the QCM - frequency shift analysis. The asymmetric and the homocentric contact types are suggested to be responsible for the positive frequency shifts observed for all three measured overtones, i.e. for the weak-coupling regime, while the “full contact” type resulted in a negative frequency shift, by effectively contributing to the mass increase of the quartz..rnThe interplay between inertia and contact forces for the particle-surface system leads to strong- or weak-coupling, with the particle affecting in three mentioned ways the polymer surface. This is manifested in the frequency shifts of the QCM system harmonics which are used to differentiate between the two interaction types and reflect the overall state of adhesion for particles of different size.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.