3 resultados para LED light calibration system
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn
Resumo:
The subject of the presented thesis is the accurate measurement of time dilation, aiming at a quantitative test of special relativity. By means of laser spectroscopy, the relativistic Doppler shifts of a clock transition in the metastable triplet spectrum of ^7Li^+ are simultaneously measured with and against the direction of motion of the ions. By employing saturation or optical double resonance spectroscopy, the Doppler broadening as caused by the ions' velocity distribution is eliminated. From these shifts both time dilation as well as the ion velocity can be extracted with high accuracy allowing for a test of the predictions of special relativity. A diode laser and a frequency-doubled titanium sapphire laser were set up for antiparallel and parallel excitation of the ions, respectively. To achieve a robust control of the laser frequencies required for the beam times, a redundant system of frequency standards consisting of a rubidium spectrometer, an iodine spectrometer, and a frequency comb was developed. At the experimental section of the ESR, an automated laser beam guiding system for exact control of polarisation, beam profile, and overlap with the ion beam, as well as a fluorescence detection system were built up. During the first experiments, the production, acceleration and lifetime of the metastable ions at the GSI heavy ion facility were investigated for the first time. The characterisation of the ion beam allowed for the first time to measure its velocity directly via the Doppler effect, which resulted in a new improved calibration of the electron cooler. In the following step the first sub-Doppler spectroscopy signals from an ion beam at 33.8 %c could be recorded. The unprecedented accuracy in such experiments allowed to derive a new upper bound for possible higher-order deviations from special relativity. Moreover future measurements with the experimental setup developed in this thesis have the potential to improve the sensitivity to low-order deviations by at least one order of magnitude compared to previous experiments; and will thus lead to a further contribution to the test of the standard model.
Resumo:
This thesis focuses on the design and characterization of a novel, artificial minimal model membrane system with chosen physical parameters to mimic a nanoparticle uptake process driven exclusively by adhesion and softness of the bilayer. The realization is based on polymersomes composed of poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PMDS-b-PMOXA) and nanoscopic colloidal particles (polystyrene, silica), and the utilization of powerful characterization techniques. rnPDMS-b-PMOXA polymersomes with a radius, Rh ~100 nm, a size polydispersity, PD = 1.1 and a membrane thickness, h = 16 nm, were prepared using the film rehydratation method. Due to the suitable mechanical properties (Young’s modulus of ~17 MPa and a bending modulus of ~7⋅10-8 J) along with the long-term stability and the modifiability, these kind of polymersomes can be used as model membranes to study physical and physicochemical aspects of transmembrane transport of nanoparticles. A combination of photon (PCS) and fluorescence (FCS) correlation spectroscopies optimizes species selectivity, necessary for a unique internalization study encompassing two main efforts. rnFor the proof of concepts, the first effort focused on the interaction of nanoparticles (Rh NP SiO2 = 14 nm, Rh NP PS = 16 nm; cNP = 0.1 gL-1) and polymersomes (Rh P = 112 nm; cP = 0.045 gL-1) with fixed size and concentration. Identification of a modified form factor of the polymersome entities, selectively seen in the PCS experiment, enabled a precise monitor and quantitative description of the incorporation process. Combining PCS and FCS led to the estimation of the incorporated particles per polymersome (about 8 in the examined system) and the development of an appropriate methodology for the kinetics and dynamics of the internalization process. rnThe second effort aimed at the establishment of the necessary phenomenology to facilitate comparison with theories. The size and concentration of the nanoparticles were chosen as the most important system variables (Rh NP = 14 - 57 nm; cNP = 0.05 - 0.2 gL-1). It was revealed that the incorporation process could be controlled to a significant extent by changing the nanoparticles size and concentration. Average number of 7 up to 11 NPs with Rh NP = 14 nm and 3 up to 6 NPs with Rh NP = 25 nm can be internalized into the present polymersomes by changing initial nanoparticles concentration in the range 0.1- 0.2 gL-1. Rapid internalization of the particles by polymersomes is observed only above a critical threshold particles concentration, dependent on the nanoparticle size. rnWith regard possible pathways for the particle uptake, cryogenic transmission electron microscopy (cryo-TEM) has revealed two different incorporation mechanisms depending on the size of the involved nanoparticles: cooperative incorporation of nanoparticles groups or single nanoparticles incorporation. Conditions for nanoparticle uptake and controlled filling of polymersomes were presented. rnIn the framework of this thesis, the experimental observation of transmembrane transport of spherical PS and SiO2 NPs into polymersomes via an internalization process was reported and examined quantitatively for the first time. rnIn a summary the work performed in frames of this thesis might have significant impact on cell model systems’ development and thus improved understanding of transmembrane transport processes. The present experimental findings help create the missing phenomenology necessary for a detailed understanding of a phenomenon with great relevance in transmembrane transport. The fact that transmembrane transport of nanoparticles can be performed by artificial model system without any additional stimuli has a fundamental impact on the understanding, not only of the nanoparticle invagination process but also of the interaction of nanoparticles with biological as well as polymeric membranes. rn