17 resultados para LDH-C4

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der Längenpolymorphismus des C4-Gens beruht auf der An- oder Abwesenheit einer 6.4 kb langen Insertion im Intron 9. Es handelt sich dabei um einen eigenständigen bisher noch nicht beschriebenen Virus-Typ, der alle Sequenzmerkmale der Familie der humanen endogenen Retroviren (HERV) trägt und zu den HERV-K Viren gehört. Der Provirus wurde als HERV-K(C4) bezeichnet. Die Orientierung dieses retroviralen Elements ist entgegengesetzt zu der Transkriptionsrichtung des C4-Gens. Mittels RT-PCR, RNase Protection Assays und Northern-Blot Analysen konnte der Nachweis von HERV-K(C4)-Antisense mRNA-Transkripten in verschiedenen humanen Zellinien und Geweben erbracht werden. Die retroviralen Transkripte schlossen am 5'- und 3'-Ende Sequenzen des C4-Exon 9 und Exon 10 ein, so daß diese wahrscheinlich "readthrough" Transkripte darstellen, die durch einen 5' des LTR2 gelegenen Promotor initiiert oder im Zusammenhang mit der C4-Expression transkribiert und reguliert werden. Weiterhin konnten insgesamt 4 HERV-K(C4)-mRNA Spezies, einschließlich einer Vollängen-RNA detektiert werden. Die drei subgenomischen mRNAs werden vermutlich durch einfaches und mehrfaches Spleißen generiert. Die quantitative Analyse in verschiedenen humanen Zellinien ergab, daß HERV-K(C4) durchschnittlich mit einer Kopienanzahl zwischen ca.1 bis 100 Transkripten in einer Zelle vorkommt, so daß es sich um low abundance mRNAs handelt. Mittels eines Reportergen-System konnte eine Aktivität des LTR2-Promotors in der Sense-Orientierung des Retrovirus nachgewiesen werden, die nach Stimulation mit IFN- signifikant abnahm. Ein humanes Modell-Systems wurde etabliert, um die Theorie einer Antisense-Abwehr gegen exogene Retroviren in HepG2-Zellen zu überprüfen. Die Theorie basiert auf dem Nachweis von HERV-K(C4)-Antisense-Transkripten, die über eine Heteroduplexbildung mit der Sense-mRNA von verwandten, infektiösen Retroviren eine mögliche Blockierung deren Translation erwirken könnten. Es konnte eine signifikante Abnahme der retroviralen Expression von bis zu 45% nach steigenden Dosen an IFN- in HepG2-Zellen nachgewiesen werden. Der funktionell aktive 3'-LTR-Sense Promotor sowie der Nachweis von HERV-K(C4)-Antisense Transkripten sprechen für die bedeutende Rolle von HERV-K(C4) bei der Genregulation und Schutz gegen exogene Retroviren, wodurch eine Selektion stattgefunden hat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Zweikomponentenregulationssystem DcuSR kontrolliert die Expression der wichtigsten fumaratinduzierten Gene in Escherichia coli. Die Gene dcuB und dctA, die fürDicarboxylatcarrier kodieren, sowie das Fumaratreduktase-Operon (frd), sind Zielgene für DcuSR. DcuS ist eine membranständige Sensorkinase mit einer großen periplasmatischen Domäne. NMR-spektroskopische Untersuchungen dieser Domäne zeigen Alpha-Helices und Beta-Faltblätter. Für die Fumaratbindung wichtige Aminosäuren wurden durch Mutagenese identifiziert. Gereinigtes DcuS wurde in Liposomen rekonstituiert. In Anwesenheit von ATP wird DcuS autophosphoryliert. Der Phosphatrest kann dann auf DcuR übertragen werden und beweist somit die Aktivität dieses in vitro Testsystems.Der Transport von C4-Dicarboxylaten erfolgt unter anaeroben Bedingungen durch die sekundären Carrier DcuA, DcuB und DcuC. Es konnte ein weiteres Protein (DcuD) identifiziert werden, das hohe Sequenzähnlichkeit zu DcuC aufweist. Eine dcuD-Mutante zeigte keinen Phänotyp und überproduziertes DcuD konnte den Ausfall der anderen Dcu-Carrier nicht kompensieren. DcuD ist damit ein kryptisches Mitglied der Dcu-Carrierfamilie. Unter aeroben Bedingungen katalysiert DctA den Transport von C4-Dicarboxylaten. Dennoch können dctA-Mutanten noch mit Succinat wachsen. Die Diffusionsrate von Succinat durch Membranen wurde bestimmt. Sie ist um Größenordnungen niedriger als der Transport in der Mutante. Bei dem DctA unabhängigen Transportsystem handelt es sich um einen H+/Succinat2-Symporter, der bei saurem pH aktiv ist und viele Eigenschaften eines Monocarboxylatcarriers aufweist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Zweikomponentensystem DcuSR reguliert die Expression der Gene der anaeroben Fumaratatmung in E. coli in Abhängigkeit von externen C4-Dicarbonsäuren. Die membranständige Histidinkinase DcuS detektiert den Reiz und leitet ihn über die Membran an den Responseregulaor DcuR weiter, der die Aktivität der Zielgene reguliert. Das Substratspektrum von DcuS wurde näher untersucht und strukturelle Eigenschaften der Substrate sowie ihre Affinität zu DcuS bestimmt. Es wird vermutet, dass Histidinkinasen im aktiven Zustand als Dimere oder höhere Oligomere vorliegen. Der Oligomerisierungszustand von DcuS in der Membran wurde mittels EPR-Spektroskopie untersucht. Es wurden funktionelle Cysteinmutanten von DcuS hergestellt, die nur an bestimmten Positionen der periplasmatischen Domäne Cysteinreste, aber sonst keine weiteren Cysteinreste, enthielten. Die Proteine wurden isoliert, über die Cysteinreste mit Nitroxiden markiert und in Liposomen rekonstituiert. Erste EPR-Messungen zeigten, dass rekonstituiertes DcuS in einem geordneten Zustand in der Membran vorliegt, der diskrete Abstände zwischen den Monomeren aufweist. Die Struktur von rekonstituiertem DcuS in der Membran soll durch Festkörper-NMR aufgeklärt werden. Ein geeignetes C-terminal verkürztes Konstrukt, DcuS-PD/PAS wurde zu diesem Zweck hergestellt. Das Protein ließ sich in hoher Reinheit isolieren und konnte wieder in Liposomen rekonstituiert werden. Vorbereitende NMR-Messungen zeigten, dass eine Strukturaufklärung an diesem Protein möglich ist. Weitere Strukturuntersuchungen werden zur Zeit durchgeführt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In E. coli dient L-Tartrat als Elektronenakzeptor während des anaeroben Wachstums und wird schließlich zu Succinat umgesetzt. Der sekundäre Carrier TtdT (YgjE) von E. coli ist ein Antiporter, der die Aufnahme von L-Tartrat im elektroneutralen Austausch gegen intrazelluläres Succinat katalysiert. TtdT besitzt eine hohe Substratspezifität und katalysiert den Transport von L-Tartrat und Succinat, nicht aber von meso- und D-Tartrat. Das Gen ttdT (ygjE) bildet mit den Genen ttdA und ttdB, welche für die L-Tartratdehydratase kodieren, ein Operon. Das benachbarte Gen ttdR (ygiP) kodiert für TtdR (YgiP), einen Tartrat-spezifischen Regulator vom LysR-Typ. TtdR reguliert die L-Tartratfermentation direkt durch Induktion des ttdABT-Operons und durch Autoregulation. TtdR stellt damit den Tartrat-spezifischen Regulator dar, der auf die Expression des ttdR ttdABT-Genclusters spezialisiert ist. Dagegen reguliert DcuSR, das Zweikomponentensystem für C4-Dicarboxylate, die L-Tartratfermentation indirekt durch die Regulation der Gene für die Fumaratatmung. YfaV und YeaV sind weitere potentielle Tartrattransporter. YfaV katalysiert vermutlich den Transport von C4-Dicarboxylaten, einschließlich Tartrat, unter aeroben und anaeroben Bedingungen. YeaV wird nur in Anwesenheit von L- und meso-Tartrat und unter aeroben Bedingungen gebildet. Die yeaUVWX-Gene unterliegen der trankriptionellen Regulation durch YeaT, dessen Gen yeaT vor yeaU liegt. YeaT ist wie TtdR ein Tartrat-spezifischer Regulator und besitzt eine signifikante Ähnlichkeit zu TtdR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli kann C4-Dicarboxylate und andere Carbonsäuren als Substrate für den aeroben und anaeroben Stoffwechsel nutzen. Die Anwesenheit von C4-Dicarboxylaten im Außenmedium wird über das Zweikomponentensystem DcuSR, bestehend aus der membranständigen Sensorkinase DcuS und dem cytoplasmatischen Responseregulator DcuR, erkannt. Die Bindung von C4-Dicarboxylaten an die periplasmatische Domäne von DcuS führt zu einer Induktion der Zielgene. Hierzu zählen die Gene für den anaeroben Fumarat/Succinat-Antiporter DcuB (dcuB), die anaerobe Fumarase (fumB) und die Fumaratreduktase (frdABCD). Unter aeroben Bedingungen stimuliert DcuSR die Expression des dctA Gens, das für den aeroben C4-Dicarboxylat-Carrier DctA kodiert. Für den Carrier DcuB konnte eine regulatorische Funktion bei der Expression der DcuSR-regulierten Gene gezeigt werden. Die Inaktivierung des dcuB Gens führte bereits ohne Fumarat zu einer maximalen Expression einer dcuB´-´lacZ Reportergenfusion und anderer DcuSR-abhängiger Gene. Diese Stimulierung erfolgte nur in einem dcuS-positiven Hintergrund. DcuB unterscheidet sich damit von den alternativen Carriern DcuA und DcuC, die diesen Effekt nicht zeigten. Mithilfe ungerichteter Mutagenese wurden DcuB-Punktmutanten hergestellt (Thr394Ile und Asp398Asn), die eine Geninduktion verursachten, aber eine intakte Transportfunktion besaßen. Dies zeigt, dass der regulatorische Effekt von DcuB unabhängig von dessen Transportfunktion ist. Durch gerichtete Mutagenese wurde die Funktion einer Punktmutation (Thr394) näher charakterisiert. Es werden zwei Modelle zur Membrantopologie von DcuB und der Lage der Punktmutationen im Protein vorgestellt. Da DcuB seine regulatorische Funktion über eine Interaktion mit DcuS vermitteln könnte, wurden mögliche Wechselwirkungen zwischen DcuB und DcuS als auch DcuR mithilfe von Two-Hybrid-Systemen untersucht. Für biochemische Untersuchungen von DcuB wurde außerdem die Expression des Proteins in vivo und in vitro versucht. Unter aeroben Bedingungen beeinflusst der C4-Dicarboxylat-Carrier DctA die Expression der DcuSR-abhängigen Gene. Eine Mutation des dctA Gens bewirkte eine stärkere Expression einer dctA´-´lacZ Reportergenfusion im Vergleich zum Wildtyp. Diese Expression nahm in einem dcuS-negativen Hintergrund ab, die Succinat-abhängige Induktion blieb jedoch erhalten. Unter anaeroben Bedingungen kann das dctA Gen auch durch Inaktivierung von DcuB induziert werden. Es wird ein Modell vorgestellt, das die Beteiligung beider Carrier an der DcuSR-abhängigen Regulation erklärt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ziel der vorliegenden Arbeit war es, Stoffwechseluntersuchungen an Experimentaltumoren von humanen Plattenepithelkarzinomen des Kopf-Hals-Bereiches mit bekannter Strahlenempfindlichkeit durchzuführen. Die Resultate sollten mit dem Genexpressionsniveau glykolyseassoziierter Transportproteine und Enzyme, der Proteinexpression von LDH-A, der Hypoxie und der Strahlenresistenz der Tumoren korreliert werden. Während die Tumorproben und die Daten zum biologischen Strahlenverhalten und zur Charakterisierung der Hypoxie aus Dresden stammen, wurden alle anderen Untersuchungen in Mainz durchgeführt. Ein wichtiges Merkmal der kooperativen Studie bestand darin, dass erstmals die Strahlenresistenz von Experimentaltumoren systematisch in einem klinischen Fraktionierungsschema untersucht wurde. Die lokale Bestimmung der Gewebskonzentrationen der Metabolite ATP, Glukose und Laktat erfolgte mit dem Verfahren der bildgebenden Biolumineszenz. Die Auswertung der Ergebnisse mit Unterstützung von Bildverarbeitungs-Software wurde weiterentwickelt und in wesentlichen Punkten verbessert. Zur Ermittlung des mRNA-Expressionsniveaus der Glykolyseenzyme PFK-L und LDH-A sowie des Glukosetransporters GLUT1 diente die real time RT-PCR-Methode. Ein Kernpunkt des methodischen Teils der vorliegenden Arbeit bildeten die Validierung und Etablierung dieses Verfahrens. Durch die Anwendung dieser Technik war es möglich, eine relative Quantifizierung des Expressionslevels durchzuführen. Die Western Blot-Analyse lieferte Aussagen über den Proteingehalt von LDH-A. Dabei kam ein neues Auswerteverfahren durch Anwendung fluoreszenzmarkierter Antikörper zum Einsatz. Die Ergebnisse zeigten erstmals einen direkten Zusammenhang zwischen dem Laktatgehalt von Tumoren und deren Strahlenresistenz. Es wurde im Vergleich zu früheren klinischen Untersuchungen eine Einstufung in Hoch- und Niedriglaktattumoren vorgenommen und eine signifikante Korrelation innerhalb der Hochlaktattumoren zwischen dem Laktatgehalt und der über Pimonidazol quantifizierten hypoxischen Fraktion festgestellt. Während die PCR Unterschiede in den drei untersuchten Genen auf transkriptioneller Ebene zwischen den sieben untersuchten Tumorlinien erkennen ließ, waren die Western Blot-Ergebnisse nahezu gleich. Da auch die Western Blot-Analysen keine Übereinstimmungen mit dem Laktatgehalt zeigten, kann auch der reine Proteingehalt keine Rolle als aktivitätsbestimmende Größe der Glykolyse spielen. Vielmehr scheinen Aktivierungs- und posttranslationale Prozesse oder auch eine Kombination mehrerer Faktoren eine Rolle zu spielen. Letztlich deuten die Befunde darauf hin, dass die glykolytische Aktivität der untersuchten Tumoren nicht über Transkription und Proteinexpression reguliert wird. Der Zusammenhang zwischen dem Laktatgehalt und der Strahlenresistenz der Tumoren kann von großer klinischer Bedeutung sein, da ein klinisch relevantes Fraktionierungsschema bei der Bestrahlung angewandt wurde. Unsere Ergebnisse bestätigen die Arbeitshypothese, dass ein hoher glykolytischer Flux mit einer hohen Umsatzrate an Metaboliten mit Radikalfängerfunktion, wie Pyruvat, einhergeht, die den Tumoren eine Radioresistenz verleihen. Der Laktatgehalt von Biopsien als Marker für die Strahlenresistenz könnte in Zukunft zu einer der Radiotherapie vorangehenden Patientenselektion herangezogen werden, um die Therapie- und insbesondere Dosisplanung in der Onkologie zu unterstützen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Da maligne Neoplasien durch Mutationen in Proto-Onko- und/oder Tumorsuppressorgenen ausgelöst werden, stellt die DNA eines der wichtigsten Targets für die Entwicklung neuer Zytostatika dar. Auch bei den im Arbeitskreis Pindur designten und synthetisier-ten Verbindungen der Nukleobasen-gekoppelten Pyrrolcarboxamid-, der Hetaren[a]carbazol- und der Combilexin-Reihe handelt es sich um DNA-Liganden mit potentiell antitumoraktiven Eigenschaf-ten. Die einen dualen Bindemodus aufweisenden Combilexine bestehen aus einem Interkalator (u. a. Naphthalimid, Acridon), der über einen Linker variabler Kettenlänge mit einer rinnenbin-denden, von Netropsin abgeleiteten Bispyrrol-, oder einer bioisosteren Imidazol-, Thiazol- oder Thiophen-pyrrolcarboxamid-struktur verknüpft ist. Das N-terminale Ende der Combilexine wird von einer N,N-Dimethylaminopropyl- oder -ethyl-Seitenkette gebildet. Die DNA-Affinitäten der Liganden wurden mittels Tm-Wert-Messung-en bestimmt. Diese Denaturierungsexperimente wurden sowohl mit poly(dAdT)2- als auch mit Thymus-DNA (~42% GC-Anteil) durchge-führt, um Aussagen zur Stärke und zur Sequenzselektivität der DNA-Bindung machen zu können. Des Weiteren wurden die Bindekon-stanten einiger ausgewählter Vertreter mit Hilfe des Ethidium-bromid-Verdrängungsassays ermittelt; einige Testverbindungen wurden zudem auf potentiell vorhandene, TOPO I-inhibierende Eigenschaften untersucht. Diese biochemischen und biophysika-lischen Tests wurden durch Molecular Modelling-Studien ergänzt, die die Berechnung von molekularen Eigenschaften, die Durch-führung von Konformerenanalysen und die Simulation von DNA-Ligand-Komplexen (Docking) umfassten. Durch Korrelation der in vitro-Befunde mit den in silico-Daten gelang es, vor allem für die Substanzklasse der Combilexine einige richtungweisende Struktur-Wirkungsbeziehungen aufzustellen. So konnte gezeigt werden, dass die Einführung eines Imidazol-Rings in die rinnen-bindende Hetaren-pyrrolcarboxamid-Struktur der Combilexine aufgrund der H-Brücken-Akzeptor-Funktion des sp2-hybridisierten N-Atoms eine Verschiebung der Sequenzselektivität der DNA-Bindung von AT- zu GC-reichen Arealen der DNA bedingt. Zudem erwies sich ein C3-Linker für die Verknüpfung des Naphthalimids mit dem rinnenbindenden Strukturelement als am besten geeignet, während bei den Acridon-Derivaten die Verbindungen mit einem N-terminalen Buttersäure-Linker die höchste DNA-Affinität aufwiesen. Dies ist sehr wahrscheinlich auf die im Vergleich zum Naphthalimid-Molekül geringere y-Achsen-Ausdehnung (bzgl. eines x/y-Koordinatensystems) des Acridons zurückzuführen. Die ermittelten Struktur-Wirkungsbeziehungen können dazu herangezogen werden, das rationale Design neuer DNA-Liganden mit potentiell stärkerer DNA-Bindung zu optimieren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Zweikomponentensystem DcuSR aus Escherichia coli reguliert in Abhängigkeit von C4-Dicarboxylaten die Expression der Gene der Fumaratatmung. Die Erkennung von C4-Dicarboxylaten erfolgt über die periplasmatische Domäne der Sensorkinase DcuS und führt zur Autophosphorylierung des konservierten Histidinrestes in der Kinasedomäne. Die Phosphatgruppe wird anschließend auf den Responseregulator DcuR übertragen und führt zur Induktion der Zielgene. Dazu gehören der Antiporter DcuB (dcuB), die anaerobe Fumarase B (fumB) und die Fumaratreduktase (frdABCD). DcuS detektiert neben C4-Dicarboxylaten auch Citrat über die periplasmatische Domäne. In dem nah verwandten Sensor CitA wird Citrat spezifisch über die drei Carboxyl- und die Hydroxylgruppe durch die Bindestellen C1, C2, C3 und H erkannt. DcuS benötigt für die Erkennung von C4-Dicarboxylaten und Citrat die gleichen Bindestellen. Die Citratbindung von DcuS ähnelte der von C4-Dicarboxylaten und unterschied sich von der Citraterkennung in CitA. DcuS konnte durch gerichtete Mutagenese der Bindungsstelle in Varianten überführt werden, die spezifisch für C4-Dicarboxylate (DcuSDC) oder Citrat (DcuSCit) waren. DcuSDC und DcuSCit hatten komplementäre Substratspezifitäten und reagierten entweder auf C4-Dicarboxylate oder auf Citrat (und Mesaconat). Citrat wurde vermutlich als C4-Dicarboxylat (mit einem Acetylrest) und somit über die gleichen Bindestellen wie C4-Dicarboxylate erkannt. Die Bindestellen C2 und C3 sind hoch konserviert und essentiell für die Bindung von zwei Carboxylgruppen von Citrat und C4-Dicarboxylaten. Die Stellen C1 und H werden vermutlich für koordinative Zwecke benötigt. Der Fumarat/Succinat-Antiporter DcuB hat neben der Transportaktivität eine regulatorische Aufgabe im DcuSR-System. Die Deletion von DcuB führte zur konstitutiven Expression der dcuB´-´lacZ Reportergenfusion und anderer DcuSR-regulierter Gene in Abwesenheit von C4-Dicarboxylaten. Die Effektor-unabhängige Expression setzte eine intakte periplasmatische Domäne von DcuS voraus und zeigte in Anwesenheit der spezifischen DcuS-Mutanten (DcuSDC, DcuSCit) eine geänderte Antwort. Die lässt vermuten, dass DcuB die regulatorischen Eigenschaften über eine direkte Wechselwirkung mit DcuS ausübt. Um den phosphorylierten Responseregulator DcuR-P in den Ursprungszustand zurückzuführen, muss dieser dephosphoryliert werden. Die bisher unbekannte Dephosphatase kann dabei entweder von dem Responseregulator, der Sensorkinase oder einem weiteren Protein stammen. DcuR verfügt über eine intrinsische Phosphataseaktivität, die durch den Sensor geringfügig stimuliert wurde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DcuS is a membrane-integral sensory histidine kinase involved in the DcuSR two-component regulatory system in Escherichia coli by regulating the gene expression of C4-dicarboxylate metabolism in response to external stimuli. How DcuS mediates the signal transduction across the membrane remains little understood. This study focused on the oligomerization and protein-protein interactions of DcuS by using quantitative Fluorescence Resonance Energy Transfer (FRET) spectroscopy. A quantitative FRET analysis for fluorescence spectroscopy has been developed in this study, consisting of three steps: (1) flexible background subtraction to yield background-free spectra, (2) a FRET quantification method to determine FRET efficiency (E) and donor fraction (fD = [donor] / ([donor]+[acceptor])) from the spectra, and (3) a model to determine the degree of oligomerization (interaction stoichiometry) in the protein complexes based on E vs. fD. The accuracy and applicability of this analysis was validated by theoretical simulations and experimental systems. These three steps were integrated into a computer procedure as an automatic quantitative FRET analysis which is easy, fast, and allows high-throughout to quantify FRET accurately and robustly, even in living cells. This method was subsequently applied to investigate oligomerization and protein-protein interactions, in particular in living cells. Cyan (CFP) and yellow fluorescent protein (YFP), two spectral variants of green fluorescent protein, were used as a donor-acceptor pair for in vivo measurements. Based on CFP- and YFP-fusions of non-interacting membrane proteins in the cell membrane, a minor FRET signal (E = 0.06 ± 0.01) can be regarded as an estimate of direct interaction between CFP and YFP moieties of fusion proteins co-localized in the cell membrane (false-positive). To confirm if the FRET occurrence is specific to the interaction of the investigated proteins, their FRET efficiency should be clearly above E = 0.06. The oligomeric state of DcuS was examined both in vivo (CFP/YFP) and in vitro (two different donor-acceptor pairs of organic dyes) by three independent experimental systems. The consistent occurrence of FRET in vitro and in vivo provides the evidence for the homo-dimerization of DcuS as full-length protein for the first time. Moreover, novel interactions (hetero-complexes) between DcuS and its functionally related proteins, citrate-specific sensor kinase CitA and aerobic dicarboxylate transporter DctA respectively, have been identified for the first time by intermolecular FRET in vivo. This analysis can be widely applied as a robust method to determine the interaction stoichiometry of protein complexes for other proteins of interest labeled with adequate fluorophores in vitro or in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two-component system DcuSR of Escherichia coli regulates gene expression of anaerobic fumarate respiration and aerobic C4-dicarboxylate uptake. C4-dicarboxylates and citrate are perceived by the periplasmic domain of the membrane-integral sensor histidine kinase DcuS. The signal is transduced across the membrane by phosphorylation of DcuS and of the response regulator DcuR, resulting in activation of DcuR and transcription of the target genes.rnIn this work, the oligomerisation of full-length DcuS was studied in vivo and in vitro. DcuS was genetically fused to derivatives of the green fluorescent protein (GFP), enabling fluorescence resonance energy transfer (FRET) measurements to detect protein-protein interactions in vivo. FRET measurements were also performed with purified His6-DcuS after labelling with fluorescent dyes and reconstitution into liposomes to study oligomerisation of DcuS in vitro. In vitro and in vivo fluorescence resonance energy transfer showed the presence of oligomeric DcuS in the membrane, which was independent of the presence of effector. Chemical crosslinking experiments allowed clear-cut evaluation of the oligomeric state of DcuS. The results showed that detergent-solubilised His6-DcuS was mainly monomeric and demonstrated the presence of tetrameric DcuS in proteoliposomes and in bacterial membranes.rnThe sensor histidine kinase CitA is part of the two-component system CitAB of E. coli, which is structurally related to DcuSR. CitAB regulates gene expression of citrate fermentation in response to external citrate. The sensor kinases DcuS and CitA were fused with an enhanced variant of the yellow fluorescent protein (YFP) and expressed in E. coli under the control of an arabinose-inducible promoter. The subcellular localisation of DcuS-YFP and CitA-YFP within the cell membrane was studied by means of confocal laser fluorescence microscopy. Both fusion proteins were found to accumulate at the cell poles. The polar accumulation was slightly increased in the presence of the stimulus fumarate or citrate, respectively, but independent of the expression level of the fusion proteins. Cell fractionation demonstrated that polar accumulation was not related to inclusion bodies formation. The degree of polar localisation of DcuS-YFP was similar to that of the well-characterised methyl-accepting chemotaxis proteins (MCPs), but independent of their presence. To enable further investigations on the function of the polar localisation of DcuS under physiological conditions, the sensor kinase was genetically fused to the flavin-based fluorescent protein Bs2 which shows fluorescence under aerobic and anaerobic conditions. The resulting dcuS-bs2 gene fusion was inserted into the chromosome of various E. coli strains.rnFurthermore, a protein-protein interaction between the related sensor histidine kinases DcuS and CitA, regulating common metabolic pathways, was detected via expression studies under anaerobic conditions in the presence of citrate and by in vivo FRET measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das fakultativ anaerobe Enterobakterium Escherichia coli nutzt C4-Dicarboxylate sowohl unter aeroben als auch anaeroben Bedingungen als Kohlenstoff- und Energiequelle. Die Aufnahme der C4-Dicarboxylaten und die Energiekonservierung mittels Fumaratatmung wird durch das Zweikomponentensystem DcuSR reguliert. Die Sensorhistidinkinase DcuS und der nachgeschaltete Responseregulator DcuR aktivieren bei Verfügbarkeit von C4-Dicarboxylaten die Expression der Gene für den Succinat Transporter DctA, den anaeroben Fumarat/Succinat Antiporter DcuB, die Fumarase B sowie die Fumaratreduktase FrdABCD. Die Transportproteine DctA und DcuB wiederum regulieren die Expression der DcuSR-abhängigen Gene negativ. Fehlen von DctA oder DcuB resultiert bereits ohne Effektor in einer maximalen Expression von dctA bzw. dcuB. Durch gerichtete und ungerichtete Mutagenese wurde gezeigt, dass die Transportfunktion des Carriers DcuB unabhängig von seiner regulatorischen Funktion ist. DcuB kann daher als Cosensor des DcuSR Systems angesehen werden.rnUnter Verwendung von Reportergenfusionen von C-terminal verkürzten Konstrukten von DcuB mit der Alkalischen Phosphatase und der β-Galactosidase wurde die Topologie des Multitransmembranproteins DcuB bestimmt. Zusätzlich wurde die Zugänglichkeit bestimmter Aminosäurereste durch chemische Modifikation mit membran-durchlässigen und membran-undurchlässigen Thiolreagenzien untersucht. Die erhaltenen Ergebnisse deuten auf die Existenz eines tief in die Membran reichenden, hydrophilen Kanal hin, welcher zum Periplasma hin geöffnet ist. Mit Hilfe der Topologie-Studien, des Hydropathie-Blots und der Sekundärstruktur-Vorhersage wurde ein Modell des Carriers erstellt. DcuB besitzt kurze, periplasmatisch liegende Proteinenden, die durch 12 Transmembranhelices und zwei große hydrophile Schleifen jeweils zwischen TM VII/VIII und TM XI/XII verbunden sind. Die regulatorisch relevanten Reste K353, T396 und D398 befinden sich innerhalb von TM XI sowie auf der angrenzenden cytoplasmatischen Schleife XI-XII. Unter Berücksichtigung der strukturellen und funktionellen Aspekte wurde ein Regulationsmodell erstellt, welches die gemeinsam durch DcuB und DcuS kontrollierte C4-Dicarboxylat-abhängige Genexpression darstellt. rnDer Effekt von DctA und DcuSR auf die Expression einer dctA´-´lacZ Reportergenfusion und auf die aerobe C4-Dicarboxylat-Aufnahme wurde untersucht. In-vivo FRET-Messungen weisen auf eine direkte Wechselwirkung zwischen dem Carrier DctA und dem Sensor DcuS hin. Dieses Ergebnis stützt die Theorie der Regulation von DcuS durch C4-Dicarboxylate und durch die Cosensoren DctA bzw. DcuB mittels direkter Protein-Protein Interaktion.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bakterien besitzen membranintegrierte Sensoren für die Reaktion auf verändernde Umweltbedingungen.rnViele der Sensoren sind Zweikomponenten-Systeme bestehend aus einer Sensorhistidinkinase und einem Responseregulator der die zellulare Antwort auslöst. DcuS, der C4-Dicarboxylat-Sensor von DcuS ist eine membranintegrierte Histidin-Kinase. DcuS ist ein Multidomänen-Protein mit einer sensorischen periplasmatischen PASP (Per-Arnt-Sim) Domäne, zwei Transmembranhelices, eine cytoplasmatische PASC-Domäne und eine C-terminale Kinase-Domäne. PAS-Domänen sind ubiquitäre Signalmodule die in allen Reichen des Lebens zu finden sind. PAS-Domänen detektieren eine Vielfalt von Reizen wie Licht, Sauerstoff, Redoxpotential und verschiedene kleine Moleküle so wie die Modulation von Protein-Protein Interaktionen. PAS-Domänen sind strukturell homolog und besitzen eine charakteristische α/β-Faltung. Eine große Anzahl der sensorischen PAS-Domänen wurden identifiziert, aber viele der PAS-Domänen besitzen keinen apparenten Cofaktor und die Funktion ist unbekannt.rnEine Kombination aus gerichteter und ungerichteter Mutagenese, Protein-Protein-Interaktionsstudien und Festkörper-NMR (ssNMR) Experimente mit strukturellem Modelling wurde zur Untersuchung der Struktur und Funktion der cytoplasmatischen PAS-Domäne des membranintegrierten Sensors DcuS verwendet. Die Experimente zeigen, dass PASC eine wichtige Rolle in die Signaltransduktion von PASP zur C-terminalen Histidin-Kinase von DcuS spielt.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Arbeit wurden zytotoxische Effekte sowie die inflammatorische Reaktionen des distalen respiratorischen Traktes nach Nanopartikelexposition untersucht. Besondere Aufmerksamkeit lag auch auf der Untersuchung unterschiedlicher zellulärer Aufnahmewege von Nanopartikeln wie z.B. Clathrin- oder Caveolae-vermittelte Endozytose oder auch Clathrin- und Caveolae-unabhängige Endozytose (mit möglicher Beteiligung von Flotillinen). Drei unterschiedliche Nanopartikel wurden hierbei gewählt: amorphes Silica (aSNP), Organosiloxan (AmorSil) und Poly(ethyleneimin) (PEI). Alle unterschiedlichen Materialien gewinnen zunehmend an Interesse für biomedizinische Forschungsrichtungen (drug and gene delivery). Insbesondere finden aSNPs auch in der Industrie vermehrt Anwendung, und stellen somit ein ernstzunehmendes Gesundheitsrisiko dar. Dieser wird dadurch zu einem begehrten Angriffsziel für pharmazeutische Verabreichungen von Medikamenten über Nanopartikel als Vehikel aber bietet zugleich auch eine Angriffsfläche für gesundheitsschädliche Nanomaterialien. Aus diesem Grund sollten die gesundheitsschädigenden Risiken, sowie das Schicksal von zellulär aufgenommenen NPs sorgfältig untersucht werden. In vivo Studien an der alveolaren-kapillaren Barriere sind recht umständlich. Aus diesem Grund wurde in dieser Arbeit ein Kokulturmodel benutzt, dass die Alveolar-Kapillare Barrier in vivo nachstellt. Das Model besteht aus dem humanen Lungenepithelzelltyp (z.B. NCI H441) und einem humanen microvasculären Endothelzelltyp (z.B. ISO-HAS-1), die auf entgegengesetzten Seiten eines Transwell-Filters ausgesät werden und eine dichte Barriere ausbilden. Die NP Interaktion mit Zellen in Kokultur wurde mit denen in konventioneller Monokultur verglichen, in der Zellen 24h vor dem Experiment ausgesät werden. Diese Studie zeigt, dass nicht nur die polarisierte Eigenschaft der Zellen in Kokultur sondern auch die unmittelbare Nähe von Epithel und Endothelzelle ausschlaggebend für durch aSNPs verursachte Effekte ist. Im Hinblick auf inflammatorische Marker (sICAM, IL-6, IL8-Ausschüttung), reagiert die Kokultur auf aSNPs empfindlicher als die konventionelle Monokultur, wohingegen die Epithelzellen in der Kokultur auf zytotoxikologischer Ebene (LDH-Ausschüttung) unempfindlicher auf aSNPs reagierten als die Zellen in Monokultur. Aufnahmestudien haben gezeigt, dass die Epithelzellen in Kokultur entschieden weniger NPs aufnehmen. Somit zeigen die H441 in der Kokultur ähnliche epitheliale Eigenschaften einer schützenden Barriere, wie sie auch in vivo zu finden sind. Obwohl eine ausreichende Aufnahme von NPs in H441 in Kokultur erreicht werden konnte, konnte ein Transport von NPs durch die epitheliale Schicht und eine Aufnahme in die endotheliale Schicht mit den gewählten Inkubationszeiten nicht gezeigt werden. Eine Clathrin- oder Caveolae-vermittelte Endozytose von NPs konnte mittels Immunfluoreszenz weder in der Mono- noch in der Kokultur nachgewiesen werden. Jedoch zeigte sich eine Akkumulation von NPs in Flotillin-1 und-2 enthaltende Vesikel in Epithelzellen aus beiden Kultursystemen. Ergebnisse mit Flotillin-inhibierten (siRNA) Epithelzellen, zeigten eine deutlich geringere Aufnahme von aSNPs. Zudem zeigte sich eine eine reduzierte Viabilität (MTS) von aSNP-behandelten Zellen. Dies deutet auf eine Beteiligung von Flotillinen an unbekannten (Clathrin oder Caveolae -unabhängig) Endozytosemechanismen und (oder) endosomaler Speicherung. Zusammenfassend waren die Aufnahmemechanismen für alle untesuchten NPs in konventioneller Monokultur und Kokultur vergleichbar, obwohl sich die Barriereeigenschaften deutlich unterscheiden. Diese Arbeit zeigt deutlich, dass sich die Zellen in Kokultur anders verhalten. Die Zellen erreichen hierbei einen höheren Differenzierungsgrad und eine Zellkommunikation mit anderen relevanten Zelltypen wird ermöglicht. Durch das Einbringen eines dritten relevanten Zelltyps in die Kokultur, des Alveolarmakrophagen (Zelllinie THP-1), welcher die erste Verteidigungsfront im Alveolus bildet, wird diese Aussage weiter bekräftigt. Erste Versuche haben gezeigt, dass die Triplekultur bezüglich ihrer Barriereeigenschaften und IL-8-Ausschüttung sensitiver auf z.B. TNF- oder LPS-Stimulation reagiert als die Kokultur. Verglichen mit konventionellen Monokulturen imitieren gut ausgebildete, multizelluräre Kokulturmodelle viel präziser das zelluläre Zusammenspiel im Körper. Darum liefern Nanopartikelinteraktionen mit dem in vitro-Triplekulturmodel aufschlussreichere Ergebnisse bezüglich umweltbedingter oder pharmazeutischer NP-Exposition in der distalen Lung als es uns bisher möglich war.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli kann C4-Dicarboxylate sowohl unter aeroben als auch unter anaeroben Bedingungen zur Energiekonservierung nutzen. Die Synthese der beteiligten Transporter und Enzyme wird auf der Transkriptionsebene durch das Zweikomponentensystem DcuSR reguliert. DcuS ist der Sensor für C4-Dicarboxylate. Der Antwortregulator DcuR wird von DcuS aktiviert und induziert die Expression des C4-Dicarboxylat-Transporters DctA unter aeroben Verhältnissen. Anaerob verstärkt DcuSR die Expression des Fumarat/Succinat-Antiporters DcuB, der Fumarase B und der Fumaratreduktase FrdABCD. DctA und DcuB agieren als Co-Sensoren von DcuS und üben einen negativen Effekt auf die Genexpression von dctA bzw. dcuB aus.rnIn dieser Arbeit wurde die Funktion von DctA und DcuB als Co-Sensoren von DcuS untersucht. Sowohl für DcuB als auch für DctA wurde eine direkte Protein-Protein-Interaktion mit DcuS über ein bakterielles Two-Hybrid System nachgewiesen. DcuS bildete ein Transporter-Sensor-Cluster mit DctA und DcuB. C-terminale Verkürzung und die Mutagenese einzelner Aminosäuren der C-terminalen Helix 8b von DctA führten zu einem Verlust der Interaktion mit DcuS. Mit dieser Interaktion gingen sowohl die regulatorische Funktion als auch die Transportfunktion der Punktmutante DctA-L414A verloren. Ein Verlust der Interaktion wurde ebenfalls zwischen einer konstitutiv aktiven DcuS-Mutante und wildtypischem DctA beobachtet. Ebenso zeigte sich eine partielle Reduktion der Interaktion von DcuS mit DctA, wenn DcuS nach der zweiten Transmembranhelix verkürzt wurde. Die Interaktion zwischen DcuS und DctA wurde durch den Effektor Fumarat modifiziert, ging aber nicht komplett verloren.rnDctA konnte in verschiedenen Plasmidsystemen überproduziert werden und bildete Homotrimere. Die Topologie von DctA wurde mit experimentellen und in silico Methoden aufgeklärt. DctA ähnelt der Struktur und Topologie des Aminosäuretransporters Glt aus Pyrococcus horikoshii. DctA besitzt acht Transmembranhelices mit einem cytosolischen N- und C-Terminus sowie zwei Haarnadelschleifen. Die Substratbindung findet höchstwahrscheinlich in den Haarnadelschleifen statt und der Transport erfolgt nach dem „alternating access“ Modell.rnAußerdem wurde die Funktion des Transporters YfcC untersucht. Das Gen yfcC wurde mit Schlüsselgenen des Acetatstoffwechsels co-transkribiert. In yfcC-Deletionsstämmen zeigte sich ein stammspezifischer Defekt bei Wachstum mit Acetat und Transport von Acetat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Enterobakterium Escherichia coli sowie das Bodenbakterium Bacillus subtilis können C4-Dicarbonsäuren als aerobe Kohlenstoffquelle zur Energiekonservierung nutzen. Die Regulation des C4-Dicarboxylatstoffwechsels erfolgt in E. coli und B. subtilis durch das Zweikomponentensystem DcuSREc bzw. DctSRBs, bestehend aus einer Sensorkinase und einem Responseregulator. Diese kontrollieren die Expression des C4-Dicarboxylat-Transporters DctA. Der Sensor DcuSEc benötigt für seine Funktion im aeroben Stoffwechsel den Transporter DctA als Cosensor. Für das DctSRBs-System gibt es Hinweise aus genetischen Untersuchungen, dass DctSBs das Bindeprotein DctBBs und möglicherweise auch DctABs als Cosensoren für seine Funktion benötigt. In dieser Arbeit sollte ein direkter Nachweis geführt werden, ob DctBBs und DctABs gemeinsam oder nur jeweils eine der Komponenten als Cosensoren für DctSBs fungieren. Sowohl für DctBBs als auch für DctABs wurde eine direkte Protein-Protein-Interaktion mit DctSBs durch zwei in vivo Interaktionsmethoden nachgewiesen. Beide Methoden beruhen auf der Co-Reinigung der Interaktionspartner mittels Affinitätschromatographie und werden je nach Affinitätssäule als mSPINE oder mHPINE (Membrane Strep/His-Protein INteraction Experiment) bezeichnet. Die Interaktion von DctSBs mit DctBBs wurde zusätzlich über ein bakterielles Two-Hybrid System nachgewiesen. Nach Coexpression mit DctSBs interagieren DctABs und DctBBs in mSPINE-Tests gleichzeitig mit der Sensorkinase. DctSBs bildet somit eine sensorische DctS/DctA/DctB-Einheit in B. subtilis und das Bindeprotein DctBBs agiert nur als Cosensor, nicht aber als Transport-Bindeprotein. Eine direkte Interaktion zwischen dem Transporter DctABs und dem Bindeprotein DctBBs besteht nicht. Transportmessungen belegen, dass der DctA-vermittelte Transport von [14C]-Succinat unabhängig ist von DctBBs. Außerdem wurde untersucht, ob Zweikomponentensysteme aus anderen Bakteriengruppen nach einem ähnlichen Schema wie DcuSREc bzw. DctSRBs aufgebaut sind. Das thermophile Bakterium Geobacillus kaustophilus verfügt über ein DctSR-System, welches auf genetischer Ebene mit einem Transporter des DctA-Typs und einem DctB-Bindeprotein geclustert vorliegt. Die Sensorkinase DctSGk wurde in E. coli heterolog exprimiert und gereinigt. Diese zeigt in einer E. coli DcuS-Insertionsmutanten Komplementation der DcuS-Funktion und besitzt dabei Spezifität für die C4-Dicarbonsäuren Malat, Fumarat, L-Tartrat und Succinat sowie für die C6-Tricarbonsäure Citrat. In Liposomen rekonstituiertes DctSGk zeigt Autokinase-Aktivität nach Zugabe von [γ-33P]-ATP. Der KD-Wert für [γ-33P]-ATP der Kinasedomäne von DctSGk liegt bei 43 μM, die Affinität für ATP ist damit etwa 10-fach höher als in DcuSEc.