4 resultados para Invariants
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Deutsche Version: Zunächst wird eine verallgemeinerte Renormierungsgruppengleichung für die effektiveMittelwertwirkung der EuklidischenQuanten-Einstein-Gravitation konstruiert und dann auf zwei unterschiedliche Trunkierungen, dieEinstein-Hilbert-Trunkierung und die$R^2$-Trunkierung, angewendet. Aus den resultierendenDifferentialgleichungen wird jeweils die Fixpunktstrukturbestimmt. Die Einstein-Hilbert-Trunkierung liefert nebeneinem Gaußschen auch einen nicht-Gaußschen Fixpunkt. Diesernicht-Gaußsche Fixpunkt und auch der Fluß in seinemEinzugsbereich werden mit hoher Genauigkeit durch die$R^2$-Trunkierung reproduziert. Weiterhin erweist sichdie Cutoffschema-Abhängigkeit der analysierten universellenGrößen als äußerst schwach. Diese Ergebnisse deuten daraufhin, daß dieser Fixpunkt wahrscheinlich auch in der exaktenTheorie existiert und die vierdimensionaleQuanten-Einstein-Gravitation somit nichtperturbativ renormierbar sein könnte. Anschließend wird gezeigt, daß der ultraviolette Bereich der$R^2$-Trunkierung und somit auch die Analyse des zugehörigenFixpunkts nicht von den Stabilitätsproblemen betroffen sind,die normalerweise durch den konformen Faktor der Metrikverursacht werden. Dadurch motiviert, wird daraufhin einskalares Spielzeugmodell, das den konformen Sektor einer``$-R+R^2$''-Theorie simuliert, hinsichtlich seinerStabilitätseigenschaften im infraroten (IR) Bereichstudiert. Dabei stellt sich heraus, daß sich die Theorieunter Ausbildung einer nichttrivialen Vakuumstruktur auf dynamische Weise stabilisiert. In der Gravitation könnteneventuell nichtlokale Invarianten des Typs $intd^dx,sqrt{g}R (D^2)^{-1} R$ dafür sorgen, daß der konformeSektor auf ähnliche Weise IR-stabil wird.
Resumo:
Diese Arbeit besch"aftigt sich mit algebraischen Zyklen auf komplexen abelschen Variet"aten der Dimension 4. Ziel der Arbeit ist ein nicht-triviales Element in $Griff^{3,2}(A^4)$ zu konstruieren. Hier bezeichnet $A^4$ die emph{generische} abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$. Die ersten drei Kapitel sind eine Wiederholung von elementaren Definitionen und Begriffen und daher eine Festlegung der Notation. In diesen erinnern wir an elementare Eigenschaften der von Saito definierten Filtrierungen $F_S$ und $Z$ auf den Chowgruppen (vgl. cite{Sa0} und cite{Sa}). Wir wiederholen auch eine Beziehung zwischen der $F_S$-Filtrierung und der Zerlegung von Beauville der Chowgruppen (vgl. cite{Be2} und cite{DeMu}), welche aus cite{Mu} stammt. Die wichtigsten Begriffe in diesem Teil sind die emph{h"ohere Griffiths' Gruppen} und die emph{infinitesimalen Invarianten h"oherer Ordnung}. Dann besch"aftigen wir uns mit emph{verallgemeinerten Prym-Variet"aten} bez"uglich $(2:1)$ "Uberlagerungen von Kurven. Wir geben ihre Konstruktion und wichtige geometrische Eigenschaften und berechnen den Typ ihrer Polarisierung. Kapitel ref{p-moduli} enth"alt ein Resultat aus cite{BCV} "uber die Dominanz der Abbildung $p(3,2):mathcal R(3,2)longrightarrow mathcal A_4(1,2,2,2)$. Dieses Resultat ist von Relevanz f"ur uns, weil es besagt, dass die generische abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$ eine verallgemeinerte Prym-Variet"at bez"uglich eine $(2:1)$ "Uberlagerung einer Kurve vom Geschlecht $7$ "uber eine Kurve vom Geschlecht $3$ ist. Der zweite Teil der Dissertation ist die eigentliche Arbeit und ist auf folgende Weise strukturiert: Kapitel ref{Deg} enth"alt die Konstruktion der Degeneration von $A^4$. Das bedeutet, dass wir in diesem Kapitel eine Familie $Xlongrightarrow S$ von verallgemeinerten Prym-Variet"aten konstruieren, sodass die klassifizierende Abbildung $Slongrightarrow mathcal A_4(1,2,2,2)$ dominant ist. Desweiteren wird ein relativer Zykel $Y/S$ auf $X/S$ konstruiert zusammen mit einer Untervariet"at $Tsubset S$, sodass wir eine explizite Beschreibung der Einbettung $Yvert _Thookrightarrow Xvert _T$ angeben k"onnen. Das letzte und wichtigste Kapitel enth"ahlt Folgendes: Wir beweisen dass, die emph{ infinitesimale Invariante zweiter Ordnung} $delta _2(alpha)$ von $alpha$ nicht trivial ist. Hier bezeichnet $alpha$ die Komponente von $Y$ in $Ch^3_{(2)}(X/S)$ unter der Beauville-Zerlegung. Damit und mit Hilfe der Ergebnissen aus Kapitel ref{Cohm} k"onnen wir zeigen, dass [ 0neq [alpha ] in Griff ^{3,2}(X/S) . ] Wir k"onnen diese Aussage verfeinern und zeigen (vgl. Theorem ref{a4}) begin{theorem}label{maintheorem} F"ur $sin S$ generisch gilt [ 0neq [alpha _s ]in Griff ^{3,2}(A^4) , ] wobei $A^4$ die generische abelsche Variet"at der Dimension $4$ mit Polarisierung vom Typ $(1,2,2,2)$ ist. end{theorem}
Resumo:
In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.
Resumo:
In vielen Teilgebieten der Mathematik ist es w"{u}nschenswert, die Monodromiegruppe einer homogenen linearen Differenzialgleichung zu verstehen. Es sind nur wenige analytische Methoden zur Berechnung dieser Gruppe bekannt, daher entwickeln wir im ersten Teil dieser Arbeit eine numerische Methode zur Approximation ihrer Erzeuger.rnIm zweiten Abschnitt fassen wir die Grundlagen der Theorie der Uniformisierung Riemannscher Fl"achen und die der arithmetischen Fuchsschen Gruppen zusammen. Auss erdem erkl"aren wir, wie unsere numerische Methode bei der Bestimmung von uniformisierenden Differenzialgleichungen dienlich sein kann. F"ur arithmetische Fuchssche Gruppen mit zwei Erzeugern erhalten wir lokale Daten und freie Parameter von Lam'{e} Gleichungen, welche die zugeh"origen Riemannschen Fl"achen uniformisieren. rnIm dritten Teil geben wir einen kurzen Abriss zur homologischen Spiegelsymmetrie und f"uhren die $widehat{Gamma}$-Klasse ein. Wir erkl"aren wie diese genutzt werden kann, um eine Hodge-theoretische Version der Spiegelsymmetrie f"ur torische Varit"aten zu beweisen. Daraus gewinnen wir Vermutungen "uber die Monodromiegruppe $M$ von Picard-Fuchs Gleichungen von gewissen Familien $f:mathcal{X}rightarrow bbp^1$ von $n$-dimensionalen Calabi-Yau Variet"aten. Diese besagen erstens, dass bez"uglich einer nat"urlichen Basis die Monodromiematrizen in $M$ Eintr"age aus dem K"orper $bbq(zeta(2j+1)/(2 pi i)^{2j+1},j=1,ldots,lfloor (n-1)/2 rfloor)$ haben. Und zweitens, dass sich topologische Invarianten des Spiegelpartners einer generischen Faser von $f:mathcal{X}rightarrow bbp^1$ aus einem speziellen Element von $M$ rekonstruieren lassen. Schliess lich benutzen wir die im ersten Teil entwickelten Methoden zur Verifizierung dieser Vermutungen, vornehmlich in Hinblick auf Dimension drei. Dar"uber hinaus erstellen wir eine Liste von Kandidaten topologischer Invarianten von vermutlich existierenden dreidimensionalen Calabi-Yau Variet"aten mit $h^{1,1}=1$.