12 resultados para Inorganic-organic

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of inorganic-organic hybrid polymers could successfully been prepared by the combination of different polymerization techniques. The access to a broad range of organic polymers incorporated into the hybrid polymer was realized using two independent approaches.rnIn the first approach a functional poly(silsesquioxane) (PSSQ) network was pre-formed, which was capable to initiate a controlled radical polymerization to graft organic vinyl-type monomers from the PSSQ precursor. As controlled radical polymerization techniques atom transfer radical polymerization (ATRP), as well as reversible addition fragmentation chain transfer (RAFT) polymerization could be used after defined tuning of the PSSQ precursor either toward a PSSQ macro-initiator or to a PSSQ macro-chain-transfer-agent. The polymerization pathway, consisting of polycondensation of trialkoxy-silanes followed by grafting-from polymerization of different monomers, allowed synthesis of various functional hybrid polymers. A controlled synthesis of the PSSQ precursors could successfully be performed using a microreactor setup; the molecular weight could be adjusted easily while the polydispersity index could be decreased well below 2.rnThe second approach aimed to incorporate differently derived organic polymers. As examples, polycarbonate and poly(ethylene glycol) were end-group-modified using trialkoxysilanes. After end-group-functionalization these organic polymers could be incorporated into a PSSQ network.rnThese different hybrid polymers showed extraordinary coating abilities. All polymers could be processed from solution by spin-coating or dip-coating. The high amount of reactive silanol moieties in the PSSQ part could be cross-linked after application by annealing at 130° for 1h. Not only cross-linking of the whole film was achieved, which resulted in mechanical interlocking with the substrate, also chemical bonds to metal or metal oxide surfaces were formed. All coating materials showed high stability and adhesion onto various underlying materials, reaching from metals (like steel or gold) and metal oxides (like glass) to plastics (like polycarbonate or polytetrafluoroethylene).rnAs the material and the synthetic pathway were very tolerant toward different functionalities, various functional monomers could be incorporated in the final coating material. The incorporation of N-isopropylacrylamide yielded in temperature-responsive surface coatings, whereas the incorporation of redox-active monomers allowed the preparation of semi-conductive coatings, capable to produce smooth hole-injection layers on transparent conductive electrodes used in optoelectronic devices.rnThe range of possible applications could be increased tremendously by incorporation of reactive monomers, capable to undergo fast and quantitative conversions by polymer-analogous reactions. For example, grafting active esters from a PSSQ precursor yielded a reactive surface coating after application onto numerous substrates. Just by dipping the coated substrate into a solution of a functionalized amine, the desired function could be immobilized at the interface as well as throughout the whole film. The obtained reactive surface coatings could be used as basis for different functional coatings for various applications. The conversion with specifically tuned amines yielded in surfaces with adjustable wetting behaviors, switchable wetting behaviors or as recognition element for surface-oriented bio-analytical devices. The combination of hybrid materials with orthogonal reactivities allowed for the first time the preparation of multi-reactive surfaces which could be functionalized sequentially with defined fractions of different groups at the interface. rnThe introduced concept to synthesis functional hybrid polymers unifies the main requirements on an ideal coating material. Strong adhesion on a wide range of underlying materials was achieved by secondary condensation of the PSSQ part, whereas the organic part allowed incorporation of various functionalities. Thus, a flexible platform to create functional and reactive surface coatings was achieved, which could be applied to different substrates. rn

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phosphonatliganden in erweiterten anorganischen Hybridmaterialien undrnals Radikalträgern in KomplexenrnrnAnorganisch-organische Hybridmaterialien sind in der Regel extrem vielseitig. Die systematische Darstellung von niederdimensionalen Materialien (eindimensionale Kettenverbindungen oder zweidimensionalen Schichtverbindungen) mit einer Kontrolle über die Art der Verbindung,rnbietet neue Möglichkeiten im Bereich des molekularen Magnetismus. Hier im Fall von Metall-Phosphonat Verbindungen in erweiterten anorganischen Hybriden wurde der pH - Wert während der Reaktion eingestellt, wodurch der Grad der Protonierung des Phosphonatliganden kontrolliert wurde. Aufgrund der Tatsache, dass alle erhaltenen Metall Phosphonatverbindungen neutral waren, konnte das Ligand zu Metallverhältnis erstmals vorhergesagt werden. So wurden mehrere neue Metall–Phosphonat Verbindungen im Bereich von Null-dimensionalen (I0O0, Co-Kristallisation von M(H2O)6 mitrndeprotonierten Phosphonatligand), über eindimensionalen (I1O0, Kettenstrukturen) bis hin zu zweidimensionalen (I2O0, Schichtstrukturen) ausführlich diskutiert in Bezug auf ihr magnetisches Verhalten. Im Allgemeinen sind die erwarteten Austauschwechselwirkungen in einem erweiterten anorganischen Hybridmaterial stark, weil oft ein Superaustausch durch ein einzelnes Sauerstoffatom möglich ist. Hier waren oft mehrere konkurrierende Austauschwechselwirkungen vorhanden, so dass kompliziertere magnetische Verhalten beobachtet wurden.rnrnDarüber hinaus wurden drei neue Beispiele von Nitronyl-Nitroxidradikale dargestellt, in denen eine zusätzliche saure Funktionalität eingeführt war. Die Auswirkungen des sauren Charakters der zusätzlich eingeführten Sulfonsäure oder Phosphonsäure-Gruppe auf das Nitronyl-Nitroxidradikal wurden im Detail zum ersten Mal untersucht. Die mit der Phosphonsäure-Gruppe versehenen Nitronyl-Nitroxidradikale sind perfekte Proben für die Untersuchung einer Spin-Verschiebung in Nitronyl-Nitroxidradikale durch EPR-Spektroskopie, aufgrund des eingeführten Phosphors. Auch der Protonierungsgrad der zusätzlich eingeführten Phosphonsäure-Gruppe wurde berücksichtigt. In dieser Arbeit wurden die ersten Metallkomplexe der neuen substituierten sauren Nitronyl-Nitroxidradikale vorgestellt. Die Koordination von Nickel(II) Metallionen an die saure, zweite funktionelle Gruppe des Nitronyl–Nitroxid Radikal wurde beschrieben. Die magnetische Austauschwechselwirkung der Metallionen untereinander und die Metall-Radikal-Austauschwechselwirkungen wurden untersucht. rnrnIm Allgemeinen können interessante molekulare magnetische Materialien dadurch dargestellt werden, dass die Dimension der Metall-Phosphonat-Verbindungen als Beispiele für die erweiterten anorganischen Hybridmaterialien gesteuert werden kann. Mit Nitronyl-Nitroxidradikale als organische Liganden können in Zukunft noch mehr Spin-Träger in anorganisch-organischen Gerüstmaterialien integriert werden um die magnetischen Eigenschaften zu verbesseren.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nature leads, we follow. But nanotechnologists are in hot pursuit, in designing controllable structures that can mimic naturally occurring and artificially synthesized materials on a common platform. The supramolecular chemistry concerns the investigation of nature principles to produce fascinating complexed and functional molecular assemblies, as well as the utilization of these principles to generate novel devices and materials, potentially useful for sensing, catalysis, transport and other applications in medical or engineering science. The work presented in this thesis is a compilation of different synthetic methods to achieve inorganic-organic hybrid nanomaterials. Silicatein, a protein enzyme, which acts both as a catalyst and template for the formation of silica needles in marine sponges, has been used for the biosynthesis of semiconductor metal oxides on surfaces. Silicatein was immobilized on gold (111) surfaces using alkane thiol, as well as on a novel self-assembly of NTA on top of a “cushion” of reactive ester polymer has been successfully employed to make functionalised surfaces. The immobilization of silicatein on surfaces was monitored by surface plasmon spectroscopy, atomic force microscopy and confocal laser scanning microscopy. Surface bound silicatein retains its biocatalytic activity, which was demonstrated by monitoring its hydrocatalytic activity to catalyse the synthesis of biosilica, biotitania, and biozirconia. The synthesis of semiconductor metal oxides was characterized using scanning electron microscopy. This hydrolytic biocatalyst is used to synthesize the gold nanoparticles. The gold nanoparticles are formed by reduction of tetrachloroaurate, AuCl4-, by the action of sulfhydryl groups hidden below the surface groups of the protein. The resulting gold nanoparticles which are stabilized by surface bound silicatein further aggregate to form Au nanocrystals. The shape of the nanocrystals obtained by using recombinant silicatein is controlled through chiral induction by the protein during the nucleation of the nanocrystals. As an extension of this work, TiO2 nanowires were functionalized using polymeric ligand which incorporates the nitrilotriacetic acid (NTA) linker in the back bone to immobilize His-tagged silicatein onto the TiO2 nanowires. The surface bound protein not only retains its original hydrolytic properties, but also acts as a reductant for AuCl4- in the synthesis of hybrid TiO2/silicatein/Au nanocomposites. Functionalized, monocrystalline rutile TiO2 nanorods were prepared from TiCl4 in aqueous solution in the presence of dopamine. The surface bound organic ligand controls the morphology as well as the crystallinity and the phase selection of TiO2. The surface amine groups can be tailored further with functional molecules such as dyes. As an example, this surface functionality is used for the covalent binding of a fluorescent dye,4-chloro-7- nitrobenzylurazene (NBD) to the TiO2 nanorods. The polymeric ligands have been used successfully for the in-situ and post-functionalization of TiO2 nanoparticles. Besides to chelating dopamine anchor group the multifunctional ligand system presented here incorporates a modifier molecule which allows the binding of functional molecules (here the dyes pyrene, NBD, and Texas Red) as well as additional entities which allow tailoring the solubility of inorganic nanocrystals in different solvents. A novel method for the surface functionalization of fullerene-type MoS2 nanoparticles and subsequently binding these nanoparticles onto TiO2 nanowires has been reported using polymeric ligands. The procedure involves the complexation of IF-MoS2 with a combination of Ni2+ via an umbrella-type nitrilotriacetic acid (NTA) and anchoring them to the sidewalls of TiO2 nanowires utilizing the hydroxyl groups of dopamine present in the main contents of polymeric ligand. A convenient method for the synthesis of Au/CdS nanocomposites has been presented, which were achieved through the novel method of thiol functionalization of gold colloids. The thermodynamically most stable phase of ZrO2 (cubic) has been obtained at much lower temperature (180°C). These nanoparticles are highly blue fluorescent, with a high surface area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this present work high quality PMMA opals with different sphere sizes, silica opals from large size spheres, multilayer opals, and inverse opals were fabricated. Highly monodisperse PMMA spheres were synthesized by surfactant-free emulsion polymerization (polydispersity ~2%). Large-area and well-ordered PMMA crystalline films with a homogenous thickness were produced by the vertical deposition method using a drawing device. Optical experiments have confirmed the high quality of these PMMA photonic crystals, e.g., well resolved high-energy bands of the transmission and reflectance spectra of the opaline films were observed. For fabrication of high quality opaline photonic crystals from large silica spheres (diameter of 890 nm), self-assembled in patterned Si-substrates a novel technique has been developed, in which the crystallization was performed by using a drawing apparatus in combination with stirring. The achievements comprise a spatial selectivity of opal crystallization without special treatment of the wafer surface, the opal lattice was found to match the pattern precisely in width as well as depth, particularly an absence of cracks within the size of the trenches, and finally a good three-dimensional order of the opal lattice even in trenches with a complex confined geometry. Multilayer opals from opaline films with different sphere sizes or different materials were produced by sequential crystallization procedure. Studies of the transmission in triple-layer hetero-opal revealed that its optical properties cannot only be considered as the linear superposition of two independent photonic bandgaps. The remarkable interface effect is the narrowing of the transmission minima. Large-area, high-quality, and robust photonic opal replicas from silicate-based inorganic-organic hybrid polymers (ORMOCER® s) were prepared by using the template-directed method, in which a high quality PMMA opal template was infiltrated with a neat inorganic-organic ORMOCER® oligomer, which can be photopolymerized within the opaline voids leading to a fully-developed replica structure with a filling factor of nearly 100%. This opal replica is structurally homogeneous, thermally and mechanically stable and the large scale (cm2 size) replica films can be handled easily as free films with a pair of tweezers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthetic Routes toward Functional Block Copolymers and Bioconjugates via RAFT PolymerizationrnSynthesewege für funktionelle Blockcopolymere und Biohybride über RAFT PolymerisationrnDissertation von Dipl.-Chem. Kerstin T. WissrnIm Rahmen dieser Arbeit wurden effiziente Methoden für die Funktionalisierung beider Polymerkettenenden für Polymer- und Bioanbindung von Polymeren entwickelt, die mittels „Reversible Addition-Fragmentation Chain Transfer“ (RAFT) Polymerisation hergestellt wurden. Zu diesem Zweck wurde ein Dithioester-basiertes Kettentransferagens (CTA) mit einer Aktivestereinheit in der R-Gruppe (Pentafluorphenyl-4-phenylthiocarbonylthio-4-cyanovaleriansäureester, kurz PFP-CTA) synthetisiert und seine Anwendung als universelles Werkzeug für die Funktionalisierung der -Endgruppe demonstriert. Zum Einen wurde gezeigt, wie dieser PFP-CTA als Vorläufer für die Synthese anderer funktioneller CTAs durch einfache Aminolyse des Aktivesters genutzt werden kann und somit den synthetischen Aufwand, der üblicherweise mit der Entwicklung neuer CTAs verbunden ist, reduzieren kann. Zum Anderen konnte der PFP-CTA für die Synthese verschiedener Poly(methacrylate) mit enger Molekulargewichtsverteilung und wohl definierter reaktiver -Endgruppe verwendet werden. Dieses Kettenende konnte dann erfolgreich mit verschiedenen primären Aminen wie Propargylamin, 1-Azido-3-aminopropan und Ethylendiamin oder direkt mit den Amin-Endgruppen verschiedener Peptide umgesetzt werden.rnAus der Reaktion des PFP-CTAs mit Propargylamin wurde ein Alkin-CTA erhalten, der sich als effizientes Werkzeug für die RAFT Polymerisation verschiedener Methacrylate erwiesen hat. Der Einbau der Alkin-Funktion am -Kettenende wurde mittels 1H und 13C NMR Spektroskopie sowie MALDI TOF Massenspektroskopie bestätigt. Als Modelreaktion wurde die Kopplung eines solchen alkin-terminierten Poly(di(ethylenglykol)methylethermethacrylates) (PDEGMEMA) mit azid-terminiertem Poly(tert-butylmethacrylat), das mittels Umsetzung einer Aktivester-Endgruppe erhalten wurde, als kupferkatalysierte Azid-Alkin-Cycloaddition (CuAAC) durchgeführt. Die Aufarbeitung des resultierenden Diblockcopolymers durch Fällen ermöglichte die vollständige Abtrennung des Polymerblocks 1, der im Überschuss eingesetzt wurde. Darüber hinaus blieb nur ein sehr kleiner Anteil (< 2 Gew.-%) nicht umgesetzten Polymerblocks 2, was eine erfolgreiche Polymeranbindung und die Effizienz der Endgruppen-Funktionalisierung ausgehend von der Aktivester--Endgruppe belegt.rnDie direkte Reaktion von stimuli-responsiven Polymeren mit Pentafluorphenyl(PFP)ester-Endgruppen, namentlich PDEGMEMA und Poly(oligo(ethylenglykol)methylethermethacrylat), mit kollagen-ähnlichen Peptiden ergab wohl definierte Polymer-Peptid-Diblockcopolymere und Polymer-Peptid-Polymer-Triblockcopolymer unter nahezu quantitativer Umsetzung der Endgruppen. Alle Produkte konnten vollständig von nicht umgesetztem Überschuss des Homopolymers befreit werden. In Analogie zu natürlichem Kollagen und dem nicht funktionalisierten kollagen-ähnlichen Peptid bilden die PDEGMEMA-basierten, entschützten Hybridcopolymere Trimere mit kollagen-ähnlichen Triple-Helices in kalter wässriger Lösung, was mittels Zirkular-Dichroismus-Spektroskopie (CD) nachgewiesen werden konnte. Temperaturabhängige CD-Spektroskopie, Trübungsmessungen und dynamische Lichtstreuung deuteten darauf hin, dass sie bei höheren Temperaturen doppelt stimuli-responsive Überstrukturen bilden, die mindestens zwei konformative Übergänge beim Aufheizen durchlaufen. Einer dieser Übergänge wird durch den hydrophoben Kollaps des Polymerblocks induziert, der andere durch Entfalten der kollagen-ähnlichen Triple-Helices.rnAls Ausweitung dieser synthetischen Strategie wurde homotelecheles PDEGMEMA mit zwei PFP-Esterendgruppen dargestellt, wozu der PFP-CTA für die Funktionalisierung der -Endgruppe und die radikalische Substitution des Dithioesters durch Behandlung mit einem Überschuss eines funktionellen AIBN-Derivates für die Funktionalisierung der -Endgruppe ausgenutzt wurde. Die Umsetzung der beiden reaktiven Kettenenden mit dem N-Terminus eines Peptidblocks ergab ein Peptid-Polymer-Peptid Triblockcopolymer.rnSchließlich konnten die anorganisch-organischen Hybridmaterialien PMSSQ-Poly(2,2-diethoxyethylacrylat) (PMSSQ-PDEEA) und PMSSQ-Poly(1,3-dioxolan-2-ylmethylacrylat) (PMSSQ-PDMA) für die Herstellung robuster, peptid-reaktiver Oberflächen durch Spin Coaten und thermisch induziertes Vernetzen angewendet werden. Nach saurem Entschützen der Acetalgruppen in diesen Filmen konnten die resultierenden Aldehydgruppen durch einfaches Eintauchen in eine Lösung mit einer Auswahl von Aminen und Hydroxylaminen umgesetzt werden, wodurch die Oberflächenhydrophilie modifiziert werden konnte. Darüber hinaus konnten auf Basis der unterschiedlichen Stabilität der zwei hier verglichenen Acetalgruppen Entschützungsprotokolle für die exklusive Entschützung der Diethylacetale in PMSSQ-PDEEA und deren Umsetzung ohne Entschützung der zyklischen Ethylenacetale in PMSSQ-PDMA entwickelt werden, die die Herstellung multifunktioneller Oberflächenbeschichtungen z.B. für die Proteinimmobilisierung ermöglichen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main aim of the work presented in this dissertation was the morphology control in metallocene-catalyzed polyolefin synthesis. This was studied by selective immobilization techniques on a variety of supports such as porous polyurethane particles (Chapter 3), electrospun fibers (Chapter 4 and 5), inorganic-organic hybrid core-shell particles (Chapter 6) and hollow silica particles (Chapter 7). Another aspect of this dissertation was modulating a catalytic activity by controlling a size of boron-based cocatalysts (Chapter 8).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Bildung kieselsäurehaltiger Spicula in marinen Schwämmen ist nur möglich durch die enzymatische Aktivität des Silicatein- in Verbindung mit der stöchiometrischen Selbstassemblierung des Enzyms mit anderen Schwammproteinen. Die vorliegende Arbeit basiert auf einem biomimetischen Ansatz mit dem Ziel, unterschiedliche Oberflächen für biotechnologische und biomedizinische Anwendungen mit Biosilica und Biotitania zu beschichten und zu funktionalisieren. Für biotechnologische Anwendungen ist dabei das Drucken von Cystein-getaggtem Silicatein auf Gold-Oberflächen von Bedeutung, denn es ermöglichte die Bildung definierter Biotitania-Strukturen (Anatas), welche als Photokatalysator den Abbau eines organischen Farbstoffs bewirkten. Des Weiteren zeigte sich die bio-inspirierte Modifikation von Tyrosin-Resten an rekombinantem Silicatein-(via Tyrosinase) als vielversprechendes Werkzeug zur Beschleunigung der Selbstassemblierung des Enzyms zu mesoskaligen Filamenten. Durch eine solche Modifikation konnte Silicatein auch auf der Oberfläche von anorganischen Partikeln immobilisiert werden, welches die Assemblierung von anorganisch-organischen Verbundwerkstoffen in wäßriger Umgebung förderte. Die resultierenden supramolekularen Strukturen könnten dabei in bio-inspirierten und biotechnologischen Anwendungen genutzt werden. Weiterhin wurde in der vorliegenden Arbeit die Sekundärstruktur von rekombinantem Silicatein- (Monomer und Oligomer) durch Raman Spektroskopie analysiert, nachdem das Protein gemäß einer neu etablierten Methode rückgefaltet worden war. Diese Spektraldaten zeigten insbesondere Änderungen der Proteinkonformation durch Solubilisierung und Oligomerisierung des Enzyms. Außerdem wurden die osteoinduzierenden und osteogenen Eigenschaften unterschiedlicher organischer Polymere, die herkömmlich als Knochenersatzmaterial genutzt werden, durch Oberflächenmodifikation mit Silicatein/Biosilica verbessert: Die bei der Kultivierung knochenbildender Zellen auf derart oberflächenbehandelten Materialien beobachtete verstärkte Biomineralisierung, Aktivierung der Alkalischen Phosphatase, und Ausbildung eines typischen zellulären Phänotyps verdeutlichen das Potential von Silicatein/Biosilica für der Herstellung neuartiger Implantat- und Knochenersatzmaterialien.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deals with the investigation of exciton and charge dynamics in hybrid solar cells by time-resolved optical spectroscopy. Quasi-steady-state and transient absorption spectroscopy, as well as time-resolved photoluminescence spectroscopy, were employed to study charge generation and recombination in solid-state organic dye-sensitized solar cells, where the commonly used liquid electrolyte is replaced by an organic solid hole transporter, namely 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD), and polymer-metal oxide bulk heterojunction solar cells, where the commonly used fullerene acceptor [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is replaced by zinc oxide (ZnO) nanoparticles. By correlating the spectroscopic results with the photovoltaic performance, efficiency-limiting processes and processes leading to photocurrent generation in the investigated systems are revealed. rnIt is shown that the charge generation from several all-organic donor-π-bridge-acceptor dyes, specifically perylene monoimide derivatives, employed in solid-state dye-sensitized solar cells, is strongly dependent on the presence of a commonly used additive lithium bis(trifluoromethanesulphonyl)imide salt (Li-TFSI) at the interface. rnMoreover, it is shown that charges can not only be generated by electron injection from the excited dye into the TiO2 acceptor and subsequent regeneration of the dye cation by the hole transporter, but also by an alternative mechanism, called preceding hole transfer (or reductive quenching). Here, the excited dye is first reduced by the hole transporter and the thereby formed anion subsequently injects an electron into the titania. This additional charge generation process, which is only possible for solid hole transporters, helps to overcome injection problems. rnHowever, a severe disadvantage of solid-state dye-sensitized solar cells is re-vealed by monitoring the transient Stark effect on dye molecules at the inter-face induced by the electric field between electrons and holes. The attraction between the negative image charge present in TiO2, which is induced by the positive charge carrier in the hole transporter due to the dielectric contrast between the organic spiro-MeOTAD and inorganic titania, is sufficient to at-tract the hole back to the interface, thereby increasing recombination and suppressing the extraction of free charges.rnBy investigating the effect of different dye structures and physical properties on charge generation and recombination, design rules and guidelines for the further advancement of solid-state dye-sensitized solar cells are proposed.rnFinally, a spectroscopic study on polymer:ZnO bulk heterojunction hybrid solar cells, employing different surfactants attached to the metal oxide nanoparticles, was performed to understand the effect of surfactants upon photovoltaic behavior. By applying a parallel pool analysis on the transient absorption data, it is shown that suppressing fast recombination while simultaneously maintaining the exciton splitting efficiency by the right choice of surfactants leads to better photovoltaic performances. Suppressing the fast recombination completely, whilst maintaining the exciton splitting, could lead to a doubling of the power conversion efficiency of this type of solar cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Untersuchung von halbleitenden Materialien auf der Basis von organischen Molekülen stellt ein Gebiet der angewandten Forschung an der Schwelle zur industriellen Nutzung dar. Geringes Gewicht und hohe mechanische Flexibilität ermöglichen völlig neue Produkte, die mit anorganischen Halbleitern nicht zu realisieren sind. Die Herstellung von Bauteilen wie Transistoren, Solarzellen oder Leuchtdioden aus organischen Materialien ist ein komplexes Gebiet, das einer Vielzahl von unterschiedlichen Optimierungen bedarf, um eine konkurrenzfähige Leistung zu erreichen. Die synthetische organische Chemie bietet vielfältige Möglichkeiten, mit maßgeschneiderten Lösungen zum Optimierungsprozess beizutragen. Zum einen können neue aktive Materialien hergestellt werden mit besserer Leistung und leichterer Verarbeitbarkeit. Zum anderen sind Substanzen zugänglich, die z.B. bei der Ladungsträgerinjektion hilfreich sein können.rnIn dieser Arbeit wurde an beiden dieser Fronten gearbeitet. Dabei lag die Entwicklungsstrategie darin, ausgedehnte π-konjugierte Moleküle herzustellen, die entweder besonders elektronenarme Akzeptoren oder elektronenreiche Donoren darstellen. Die genaue Kontrolle der elektronischen Niveaus stellt einen wichtigen Bestandteil dar, um niedrige elektrische Kontaktbarrieren zu Metallen zu erreichen und ausreichend stabile Materialien zu erreichen.rnDer erste Fokus der Arbeiten lag in der Funktionalisierung von Coronen. Dieser PAH stellt einen guten Kompromiss bezüglich seiner Größe dar: Er ist groß genug, um Diffusion in andere Schichten von Bauteilen zu vermeiden, aber nicht zu groß, um Verarbeitung durch Vakuumsublimation zu ermöglichen. Bislang sind praktisch keine Coronen-Derivate in der Literatur beschrieben, weshalb eine neue Synthese entwickelt werden musste, die die Einführung starker Donor- und Akzeptorfunktionalitäten erlaubt. Die photochemische Cyclodehydrierung von substituierten [2.2.2]paracyclophan-trienen stellte sich als hervorragende Möglichkeit heraus, dies zu bewerkstelligen. Es wurde eine Reihe von methoxy-substitutierten Coronenen mit unterschiedlicher Symmetrie hergestellt. Mittels optischer Spektroskopie konnte gezeigt werden, dass Methoxygruppen wenig Einfluss auf die elektronischen Eigenschaften von Coronen haben. Unter Spaltung der Methylether und anschließender Oxidation allerdings sind Coronenketone zugänglich, welche bis zu drei α-Diketongruppen besitzen. Diese Moleküle sind enorm starke Akzeptoren, was durch Cyclovoltammetrie und Vergleich zu anderen Akzeptoren eindrucksvoll gezeigt werden konnte. Die Sublimation dieses Akzeptors auf die Oberfläche von Metallen zeigt einen dramatischen Einfluss auf die Austrittsarbeit dieses Metalls, was zur Herstellung eines ohmschen Kontakts zu organischen Halbleitern von außerordentlichem Nutzen ist. rnDen zweiten Teil der Arbeit bilden Benzodithiophen enthaltende Polymere, die für den Einsatz als aktive Komponente in elektronischen Bauteilen entwickelt wurden. Nach systematischer Strukturoptimierung wurde ein Polymer enthalten, welches in einem Feldeffekt-Transistor auf Standard-Silizium-Substraten Ladungsträger-Mobilitäten über 0,1 cm2/Vs erreicht mit großer Reproduzierbarkeit und ausgezeichneter Transistor-Charakteristik. Es konnte gezeigt werden, dass die durch die Monomergeometrie erzeugte Kurvung des Polymers zu einem optimalen Kompromiss aus Löslichkeit und effektiver Packung darstellt. Auf für industrielle Anwendungen besonders interessanten polymer-basierten Substraten wurde eine noch erheblich bessere Leistung gezeigt. Auf einem PET-Substrat wurden Feldeffekt-Mobilitäten von 0,5 cm2/Vs gemessen mit überzeugenden Reproduzierbarkeit und Stabilität.rnDamit konnte in der Arbeit ein bedeutender Beitrag zur Weiterentwicklung von Materialien für den Einsatz in elektronischen Bauteilen geleistet werden. Die Substanzen versprechen noch erhebliches Potenzial nach intensiver Optimierung und wurden deshalb zum Patent angemeldet.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosolpartikel beeinflussen das Klima durch Streuung und Absorption von Strahlung sowie als Nukleations-Kerne für Wolkentröpfchen und Eiskristalle. Darüber hinaus haben Aerosole einen starken Einfluss auf die Luftverschmutzung und die öffentliche Gesundheit. Gas-Partikel-Wechselwirkunge sind wichtige Prozesse, weil sie die physikalischen und chemischen Eigenschaften von Aerosolen wie Toxizität, Reaktivität, Hygroskopizität und optische Eigenschaften beeinflussen. Durch einen Mangel an experimentellen Daten und universellen Modellformalismen sind jedoch die Mechanismen und die Kinetik der Gasaufnahme und der chemischen Transformation organischer Aerosolpartikel unzureichend erfasst. Sowohl die chemische Transformation als auch die negativen gesundheitlichen Auswirkungen von toxischen und allergenen Aerosolpartikeln, wie Ruß, polyzyklische aromatische Kohlenwasserstoffe (PAK) und Proteine, sind bislang nicht gut verstanden.rn Kinetische Fluss-Modelle für Aerosoloberflächen- und Partikelbulk-Chemie wurden auf Basis des Pöschl-Rudich-Ammann-Formalismus für Gas-Partikel-Wechselwirkungen entwickelt. Zunächst wurde das kinetische Doppelschicht-Oberflächenmodell K2-SURF entwickelt, welches den Abbau von PAK auf Aerosolpartikeln in Gegenwart von Ozon, Stickstoffdioxid, Wasserdampf, Hydroxyl- und Nitrat-Radikalen beschreibt. Kompetitive Adsorption und chemische Transformation der Oberfläche führen zu einer stark nicht-linearen Abhängigkeit der Ozon-Aufnahme bezüglich Gaszusammensetzung. Unter atmosphärischen Bedingungen reicht die chemische Lebensdauer von PAK von wenigen Minuten auf Ruß, über mehrere Stunden auf organischen und anorganischen Feststoffen bis hin zu Tagen auf flüssigen Partikeln. rn Anschließend wurde das kinetische Mehrschichtenmodell KM-SUB entwickelt um die chemische Transformation organischer Aerosolpartikel zu beschreiben. KM-SUB ist in der Lage, Transportprozesse und chemische Reaktionen an der Oberfläche und im Bulk von Aerosol-partikeln explizit aufzulösen. Es erforder im Gegensatz zu früheren Modellen keine vereinfachenden Annahmen über stationäre Zustände und radiale Durchmischung. In Kombination mit Literaturdaten und neuen experimentellen Ergebnissen wurde KM-SUB eingesetzt, um die Effekte von Grenzflächen- und Bulk-Transportprozessen auf die Ozonolyse und Nitrierung von Protein-Makromolekülen, Ölsäure, und verwandten organischen Ver¬bin-dungen aufzuklären. Die in dieser Studie entwickelten kinetischen Modelle sollen als Basis für die Entwicklung eines detaillierten Mechanismus für Aerosolchemie dienen sowie für das Herleiten von vereinfachten, jedoch realistischen Parametrisierungen für großskalige globale Atmosphären- und Klima-Modelle. rn Die in dieser Studie durchgeführten Experimente und Modellrechnungen liefern Beweise für die Bildung langlebiger reaktiver Sauerstoff-Intermediate (ROI) in der heterogenen Reaktion von Ozon mit Aerosolpartikeln. Die chemische Lebensdauer dieser Zwischenformen beträgt mehr als 100 s, deutlich länger als die Oberflächen-Verweilzeit von molekularem O3 (~10-9 s). Die ROIs erklären scheinbare Diskrepanzen zwischen früheren quantenmechanischen Berechnungen und kinetischen Experimenten. Sie spielen eine Schlüsselrolle in der chemischen Transformation sowie in den negativen Gesundheitseffekten von toxischen und allergenen Feinstaubkomponenten, wie Ruß, PAK und Proteine. ROIs sind vermutlich auch an der Zersetzung von Ozon auf mineralischem Staub und an der Bildung sowie am Wachstum von sekundären organischen Aerosolen beteiligt. Darüber hinaus bilden ROIs eine Verbindung zwischen atmosphärischen und biosphärischen Mehrphasenprozessen (chemische und biologische Alterung).rn Organische Verbindungen können als amorpher Feststoff oder in einem halbfesten Zustand vorliegen, der die Geschwindigkeit von heterogenen Reaktionenen und Mehrphasenprozessen in Aerosolen beeinflusst. Strömungsrohr-Experimente zeigen, dass die Ozonaufnahme und die oxidative Alterung von amorphen Proteinen durch Bulk-Diffusion kinetisch limitiert sind. Die reaktive Gasaufnahme zeigt eine deutliche Zunahme mit zunehmender Luftfeuchte, was durch eine Verringerung der Viskosität zu erklären ist, bedingt durch einen Phasenübergang der amorphen organischen Matrix von einem glasartigen zu einem halbfesten Zustand (feuchtigkeitsinduzierter Phasenübergang). Die chemische Lebensdauer reaktiver Verbindungen in organischen Partikeln kann von Sekunden bis zu Tagen ansteigen, da die Diffusionsrate in der halbfesten Phase bei niedriger Temperatur oder geringer Luftfeuchte um Größenordnungen absinken kann. Die Ergebnisse dieser Studie zeigen wie halbfeste Phasen die Auswirkung organischeer Aerosole auf Luftqualität, Gesundheit und Klima beeinflussen können. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosol particles are strongly related to climate, air quality, visibility and human health issues. They contribute the largest uncertainty in the assessment of the Earth´s radiative budget, directly by scattering or absorbing solar radiation or indirectly by nucleating cloud droplets. The influence of aerosol particles on cloud related climatic effects essentially depends upon their number concentration, size and chemical composition. A major part of submicron aerosol consists of secondary organic aerosol (SOA) that is formed in the atmosphere by the oxidation of volatile organic compounds. SOA can comprise a highly diverse spectrum of compounds that undergo continuous chemical transformations in the atmosphere.rnThe aim of this work was to obtain insights into the complexity of ambient SOA by the application of advanced mass spectrometric techniques. Therefore, an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) was applied in the field, facilitating the measurement of ions of the intact molecular organic species. Furthermore, the high measurement frequency provided insights into SOA composition and chemical transformation processes on a high temporal resolution. Within different comprehensive field campaigns, online measurements of particular biogenic organic acids were achieved by combining an online aerosol concentrator with the APCI-IT-MS. A holistic picture of the ambient organic aerosol was obtained through the co-located application of other complementary MS techniques, such as aerosol mass spectrometry (AMS) or filter sampling for the analysis by liquid chromatography / ultrahigh resolution mass spectrometry (LC/UHRMS).rnIn particular, during a summertime field study at the pristine boreal forest station in Hyytiälä, Finland, the partitioning of organic acids between gas and particle phase was quantified, based on the online APCI-IT-MS and AMS measurements. It was found that low volatile compounds reside to a large extent in the gas phase. This observation can be interpreted as a consequence of large aerosol equilibration timescales, which build up due to the continuous production of low volatile compounds in the gas phase and/or a semi-solid phase state of the ambient aerosol. Furthermore, in-situ structural informations of particular compounds were achieved by using the MS/MS mode of the ion trap. The comparison to MS/MS spectra from laboratory generated SOA of specific monoterpene precursors indicated that laboratory SOA barely depicts the complexity of ambient SOA. Moreover, it was shown that the mass spectra of the laboratory SOA more closely resemble the ambient gas phase composition, indicating that the oxidation state of the ambient organic compounds in the particle phase is underestimated by the comparison to laboratory ozonolysis. These observations suggest that the micro-scale processes, such as the chemistry of aerosol aging or the gas-to-particle partitioning, need to be better understood in order to predict SOA concentrations more reliably.rnDuring a field study at the Mt. Kleiner Feldberg, Germany, a slightly different aerosol concentrator / APCI-IT-MS setup made the online analysis of new particle formation possible. During a particular nucleation event, the online mass spectra indicated that organic compounds of approximately 300 Da are main constituents of the bulk aerosol during ambient new particle formation. Co-located filter analysis by LC/UHRMS analysis supported these findings and furthermore allowed to determine the molecular formulas of the involved organic compounds. The unambiguous identification of several oxidized C 15 compounds indicated that oxidation products of sesquiterpenes can be important compounds for the initial formation and subsequent growth of atmospheric nanoparticles.rnThe LC/UHRMS analysis furthermore revealed that considerable amounts of organosulfates and nitrooxy organosulfates were detected on the filter samples. Indeed, it was found that several nitrooxy organosulfate related APCI-IT-MS mass traces were simultaneously enhanced. Concurrent particle phase ion chromatography and AMS measurements indicated a strong bias between inorganic sulfate and total sulfate concentrations, supporting the assumption that substantial amounts of sulfate was bonded to organic molecules.rnFinally, the comprehensive chemical analysis of the aerosol composition was compared to the hygroscopicity parameter kappa, which was derived from cloud condensation nuclei (CCN) measurements. Simultaneously, organic aerosol aging was observed by the evolution of a ratio between a second and a first generation biogenic oxidation product. It was found that this aging proxy positively correlates with increasing hygroscopicity. Moreover, it was observed that the bonding of sulfate to organic molecules leads to a significant reduction of kappa, compared to an internal mixture of the same mass fractions of purely inorganic sulfate and organic molecules. Concluding, it has been shown within this thesis that the application of modern mass spectrometric techniques allows for detailed insights into chemical and physico-chemical processes of atmospheric aerosols.rn