2 resultados para HOMOGENEOUS POLYNOMIALS

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sei $\pi:X\rightarrow S$ eine \"uber $\Z$ definierte Familie von Calabi-Yau Varietaten der Dimension drei. Es existiere ein unter dem Gauss-Manin Zusammenhang invarianter Untermodul $M\subset H^3_{DR}(X/S)$ von Rang vier, sodass der Picard-Fuchs Operator $P$ auf $M$ ein sogenannter {\em Calabi-Yau } Operator von Ordnung vier ist. Sei $k$ ein endlicher K\"orper der Charaktetristik $p$, und sei $\pi_0:X_0\rightarrow S_0$ die Reduktion von $\pi$ \uber $k$. F\ur die gew\ohnlichen (ordinary) Fasern $X_{t_0}$ der Familie leiten wir eine explizite Formel zur Berechnung des charakteristischen Polynoms des Frobeniusendomorphismus, des {\em Frobeniuspolynoms}, auf dem korrespondierenden Untermodul $M_{cris}\subset H^3_{cris}(X_{t_0})$ her. Sei nun $f_0(z)$ die Potenzreihenl\osung der Differentialgleichung $Pf=0$ in einer Umgebung der Null. Da eine reziproke Nullstelle des Frobeniuspolynoms in einem Teichm\uller-Punkt $t$ durch $f_0(z)/f_0(z^p)|_{z=t}$ gegeben ist, ist ein entscheidender Schritt in der Berechnung des Frobeniuspolynoms die Konstruktion einer $p-$adischen analytischen Fortsetzung des Quotienten $f_0(z)/f_0(z^p)$ auf den Rand des $p-$adischen Einheitskreises. Kann man die Koeffizienten von $f_0$ mithilfe der konstanten Terme in den Potenzen eines Laurent-Polynoms, dessen Newton-Polyeder den Ursprung als einzigen inneren Gitterpunkt enth\alt, ausdr\ucken,so beweisen wir gewisse Kongruenz-Eigenschaften unter den Koeffizienten von $f_0$. Diese sind entscheidend bei der Konstruktion der analytischen Fortsetzung. Enth\alt die Faser $X_{t_0}$ einen gew\ohnlichen Doppelpunkt, so erwarten wir im Grenz\ubergang, dass das Frobeniuspolynom in zwei Faktoren von Grad eins und einen Faktor von Grad zwei zerf\allt. Der Faktor von Grad zwei ist dabei durch einen Koeffizienten $a_p$ eindeutig bestimmt. Durchl\auft nun $p$ die Menge aller Primzahlen, so erwarten wir aufgrund des Modularit\atssatzes, dass es eine Modulform von Gewicht vier gibt, deren Koeffizienten durch die Koeffizienten $a_p$ gegeben sind. Diese Erwartung hat sich durch unsere umfangreichen Rechnungen best\atigt. Dar\uberhinaus leiten wir weitere Formeln zur Bestimmung des Frobeniuspolynoms her, in welchen auch die nicht-holomorphen L\osungen der Gleichung $Pf=0$ in einer Umgebung der Null eine Rolle spielen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden Computersimulationen von Keimbildungs- und Kris\-tallisationsprozessen in rnkolloidalen Systemen durchgef\"uhrt. rnEine Kombination von Monte-Carlo-Simulationsmethoden und der Forward-Flux-Sampling-Technik wurde rnimplementiert, um die homogene und heterogene Nukleation von Kristallen monodisperser Hart\-kugeln zu untersuchen. rnIm m\"a\ss{ig} unterk\"uhlten Bulk-Hartkugelsystem sagen wir die homogenen Nukleationsraten voraus und rnvergleichen die Resultate mit anderen theoretischen Ergebnissen und experimentellen Daten. rnWeiterhin analysieren wir die kristallinen Cluster in den Keimbildungs- und Wachstumszonen, rnwobei sich herausstellt, dass kristalline Cluster sich in unterschiedlichen Formen im System bilden. rnKleine Cluster sind eher l\"anglich in eine beliebige Richtung ausgedehnt, w\"ahrend gr\"o\ss{ere} rnCluster kompakter und von ellipsoidaler Gestalt sind. rn rnIm n\"achsten Teil untersuchen wir die heterogene Keimbildung an strukturierten bcc (100)-W\"anden. rnDie 2d-Analyse der kristallinen Schichten an der Wand zeigt, dass die Struktur der rnWand eine entscheidende Rolle in der Kristallisation von Hartkugelkolloiden spielt. rnWir sagen zudem die heterogenen Kristallbildungsraten bei verschiedenen \"Ubers\"attigungsgraden voraus. rnDurch Analyse der gr\"o\ss{ten} Cluster an der Wand sch\"atzen wir zus\"atzlich den Kontaktwinkel rnzwischen Kristallcluster und Wand ab. rnEs stellt sich heraus, dass wir in solchen Systemen weit von der Benetzungsregion rnentfernt sind und der Kristallisationsprozess durch heterogene Nukleation stattfindet. rn rnIm letzten Teil der Arbeit betrachten wir die Kristallisation von Lennard-Jones-Kolloidsystemen rnzwischen zwei ebenen W\"anden. rnUm die Erstarrungsprozesse f\"ur ein solches System zu untersuchen, haben wir eine Analyse des rnOrdnungsparameters f\"ur die Bindung-Ausrichtung in den Schichten durchgef\"urt. rnDie Ergebnisse zeigen, dass innerhalb einer Schicht keine hexatische Ordnung besteht, rnwelche auf einen Kosterlitz-Thouless-Schmelzvorgang hinweisen w\"urde. rnDie Hysterese in den Erhitzungs-Gefrier\-kurven zeigt dar\"uber hinaus, dass der Kristallisationsprozess rneinen aktivierten Prozess darstellt.