7 resultados para Gravity and Anharmonicity

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of maar-diatreme volcanoes has been perfomed by inversion of gravity and magnetic data. The geophysical inverse problem has been solved by means of the damped nonlinear least-squares method. To ensure stability and convergence of the solution of the inverse problem, a mathematical tool, consisting in data weighting and model scaling, has been worked out. Theoretical gravity and magnetic modeling of maar-diatreme volcanoes has been conducted in order to get information, which is used for a simple rough qualitative and/or quantitative interpretation. The information also serves as a priori information to design models for the inversion and/or to assist the interpretation of inversion results. The results of theoretical modeling have been used to roughly estimate the heights and the dip angles of the walls of eight Eifel maar-diatremes — each taken as a whole. Inversemodeling has been conducted for the Schönfeld Maar (magnetics) and the Hausten-Morswiesen Maar (gravity and magnetics). The geometrical parameters of these maars, as well as the density and magnetic properties of the rocks filling them, have been estimated. For a reliable interpretation of the inversion results, beside the knowledge from theoretical modeling, it was resorted to other tools such like field transformations and spectral analysis for complementary information. Geologic models, based on thesynthesis of the respective interpretation results, are presented for the two maars mentioned above. The results gave more insight into the genesis, physics and posteruptive development of the maar-diatreme volcanoes. A classification of the maar-diatreme volcanoes into three main types has been elaborated. Relatively high magnetic anomalies are indicative of scoria cones embeded within maar-diatremes if they are not caused by a strong remanent component of the magnetization. Smaller (weaker) secondary gravity and magnetic anomalies on the background of the main anomaly of a maar-diatreme — especially in the boundary areas — are indicative for subsidence processes, which probably occurred in the late sedimentation phase of the posteruptive development. Contrary to postulates referring to kimberlite pipes, there exists no generalized systematics between diameter and height nor between geophysical anomaly and the dimensions of the maar-diatreme volcanoes. Although both maar-diatreme volcanoes and kimberlite pipes are products of phreatomagmatism, they probably formed in different thermodynamic and hydrogeological environments. In the case of kimberlite pipes, large amounts of magma and groundwater, certainly supplied by deep and large reservoirs, interacted under high pressure and temperature conditions. This led to a long period phreatomagmatic process and hence to the formation of large structures. Concerning the maar-diatreme and tuff-ring-diatreme volcanoes, the phreatomagmatic process takes place due to an interaction between magma from small and shallow magma chambers (probably segregated magmas) and small amounts of near-surface groundwater under low pressure and temperature conditions. This leads to shorter time eruptions and consequently to structures of smaller size in comparison with kimberlite pipes. Nevertheless, the results show that the diameter to height ratio for 50% of the studied maar-diatremes is around 1, whereby the dip angle of the diatreme walls is similar to that of the kimberlite pipes and lies between 70 and 85°. Note that these numerical characteristics, especially the dip angle, hold for the maars the diatremes of which — estimated by modeling — have the shape of a truncated cone. This indicates that the diatreme can not be completely resolved by inversion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, we have chosen to concentrate on this category, which includes cables, hoses and wiring harnesses. In this thesis, we present a system for simulating one dimensional flexible parts such as cables or hoses. The modeling of bending and torsion follows the Cosserat model. For this purpose we use a generalized spring-mass system and describe its configuration by a carefully chosen set of coordinates. Gravity and contact forces as well as the forces responsible for length conservation are expressed in Cartesian coordinates. But bending and torsion effects can be dealt with more effectively by using quaternions to represent the orientation of the segments joining two neighboring mass points. This augmented system allows an easy formulation of all interactions with the best appropriate coordinate type and yields a strongly banded Hessian matrix. An energy minimizing process accounts for a solution exempt from the oscillations that are typical of spring-mass systems. The use of integral forces, similar to an integral controller, allows to enforce exactly the constraints. The whole system is numerically stable and can be solved at interactive frame rates. It is integrated in the DaimlerChrysler in-house Virtual Reality Software veo for use in applications such as cable routing and assembly simulation and has been well received by users. Parts of this work have been published at the ACM Solid and Physical Modeling Conference 2006 and have been selected for the special issue of the Computer-Aided-Design Journal to the conference.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZusammenfassungDie Bildung von mittelozeanischen Rückenbasalten (MORB) ist einer der wichtigsten Stoffflüsse der Erde. Jährlich wird entlang der 75.000 km langen mittelozeanischen Rücken mehr als 20 km3 neue magmatische Kruste gebildet, das sind etwa 90 Prozent der globalen Magmenproduktion. Obwohl ozeanische Rücken und MORB zu den am meisten untersuchten geologischen Themenbereichen gehören, existieren weiterhin einige Streit-fragen. Zu den wichtigsten zählt die Rolle von geodynamischen Rahmenbedingungen, wie etwa Divergenzrate oder die Nähe zu Hotspots oder Transformstörungen, sowie der absolute Aufschmelzgrad, oder die Tiefe, in der die Aufschmelzung unter den Rücken beginnt. Diese Dissertation widmet sich diesen Themen auf der Basis von Haupt- und Spurenelementzusammensetzungen in Mineralen ozeanischer Mantelgesteine.Geochemische Charakteristika von MORB deuten darauf hin, dass der ozeanische Mantel im Stabilitätsfeld von Granatperidotit zu schmelzen beginnt. Neuere Experimente zeigen jedoch, dass die schweren Seltenerdelemente (SEE) kompatibel im Klinopyroxen (Cpx) sind. Aufgrund dieser granatähnlichen Eigenschaft von Cpx wird Granat nicht mehr zur Erklärung der MORB Daten benötigt, wodurch sich der Beginn der Aufschmelzung zu geringeren Drucken verschiebt. Aus diesem Grund ist es wichtig zu überprüfen, ob diese Hypothese mit Daten von abyssalen Peridotiten in Einklang zu bringen ist. Diese am Ozeanboden aufgeschlossenen Mantelfragmente stellen die Residuen des Aufschmelz-prozesses dar, und ihr Mineralchemismus enthält Information über die Bildungs-bedingungen der Magmen. Haupt- und Spurenelementzusammensetzungen von Peridotit-proben des Zentralindischen Rückens (CIR) wurden mit Mikrosonde und Ionensonde bestimmt, und mit veröffentlichten Daten verglichen. Cpx der CIR Peridotite weisen niedrige Verhältnisse von mittleren zu schweren SEE und hohe absolute Konzentrationen der schweren SEE auf. Aufschmelzmodelle eines Spinellperidotits unter Anwendung von üblichen, inkompatiblen Verteilungskoeffizienten (Kd's) können die gemessenen Fraktionierungen von mittleren zu schweren SEE nicht reproduzieren. Die Anwendung der neuen Kd's, die kompatibles Verhalten der schweren SEE im Cpx vorhersagen, ergibt zwar bessere Resultate, kann jedoch nicht die am stärksten fraktionierten Proben erklären. Darüber hinaus werden sehr hohe Aufschmelzgrade benötigt, was nicht mit Hauptelementdaten in Einklang zu bringen ist. Niedrige (~3-5%) Aufschmelzgrade im Stabilitätsfeld von Granatperidotit, gefolgt von weiterer Aufschmelzung von Spinellperidotit kann jedoch die Beobachtungen weitgehend erklären. Aus diesem Grund muss Granat weiterhin als wichtige Phase bei der Genese von MORB betrachtet werden (Kapitel 1).Eine weitere Hürde zum quantitativen Verständnis von Aufschmelzprozessen unter mittelozeanischen Rücken ist die fehlende Korrelation zwischen Haupt- und Spuren-elementen in residuellen abyssalen Peridotiten. Das Cr/(Cr+Al) Verhältnis (Cr#) in Spinell wird im Allgemeinen als guter qualitativer Indikator für den Aufschmelzgrad betrachtet. Die Mineralchemie der CIR Peridotite und publizierte Daten von anderen abyssalen Peridotiten zeigen, dass die schweren SEE sehr gut (r2 ~ 0.9) mit Cr# der koexistierenden Spinelle korreliert. Die Auswertung dieser Korrelation ergibt einen quantitativen Aufschmelz-indikator für Residuen, welcher auf dem Spinellchemismus basiert. Damit kann der Schmelzgrad als Funktion von Cr# in Spinell ausgedrückt werden: F = 0.10×ln(Cr#) + 0.24 (Hellebrand et al., Nature, in review; Kapitel 2). Die Anwendung dieses Indikators auf Mantelproben, für die keine Ionensondendaten verfügbar sind, ermöglicht es, geochemische und geophysikalischen Daten zu verbinden. Aus geodynamischer Perspektive ist der Gakkel Rücken im Arktischen Ozean von großer Bedeutung für das Verständnis von Aufschmelzprozessen, da er weltweit die niedrigste Divergenzrate aufweist und große Transformstörungen fehlen. Publizierte Basaltdaten deuten auf einen extrem niedrigen Aufschmelzgrad hin, was mit globalen Korrelationen im Einklang steht. Stark alterierte Mantelperidotite einer Lokalität entlang des kaum beprobten Gakkel Rückens wurden deshalb auf Primärminerale untersucht. Nur in einer Probe sind oxidierte Spinellpseudomorphosen mit Spuren primärer Spinelle erhalten geblieben. Ihre Cr# ist signifikant höher als die einiger Peridotite von schneller divergierenden Rücken und ihr Schmelzgrad ist damit höher als aufgrund der Basaltzusammensetzungen vermutet. Der unter Anwendung des oben erwähnten Indikators ermittelte Schmelzgrad ermöglicht die Berechnung der Krustenmächtigkeit am Gakkel Rücken. Diese ist wesentlich größer als die aus Schweredaten ermittelte Mächtigkeit, oder die aus der globalen Korrelation zwischen Divergenzrate und mittels Seismik erhaltene Krustendicke. Dieses unerwartete Ergebnis kann möglicherweise auf kompositionelle Heterogenitäten bei niedrigen Schmelzgraden, oder auf eine insgesamt größere Verarmung des Mantels unter dem Gakkel Rücken zurückgeführt werden (Hellebrand et al., Chem.Geol., in review; Kapitel 3).Zusätzliche Informationen zur Modellierung und Analytik sind im Anhang A-C aufgeführt

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn