10 resultados para Granules sécrétoires
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Das zytoplasmatische Zytoskelett besteht aus drei Filamentsystemen, die aus Aktin, Tubulin und Intermediärfilamentproteinen aufgebaut sind und dreidimensionale Netzwerke ausbilden. Das Intermediärfilamentsystem, dem vor allem mechanische Stabilisierungsfunktionen zugesprochen werden, unterscheidet sich von den anderen durch seine Fähigkeit, spontan aus seinen Polypeptiduntereinheiten ohne weitere Kofaktoren zu polymerisieren und durch seinen unpolaren Aufbau. Es ist bis heute unbekannt, wie Intermediärfilamentnetzwerke in vivo moduliert werden und wie ihre Anordnung in den Kontext des Gesamtzytoskeletts koordiniert wird. Am Beispiel der epithelialen Intermediärfilamentproteine, den Keratinen, sollte daher untersucht werden, wie und wo neue Intermediärfilamente entstehen, welche Bedeutung den anderen Filamentsystemen bei dem Netzwerkaufbau und –Turn-Over zukommen und wie die Netzwerkbildung gesteuert wird. Zur Beantwortung dieser Fragestellungen wurden Zellklone hergestellt, die fluoreszierende Keratine synthetisieren. In der Zelllinie SK8/18-2, deren gesamtes Netzwerk aus derartigen Chimären aufgebaut ist, konnten anhand von mikroskopischen Zeitrafferaufnahmen der Fluoreszenzmuster Keratinfilamentvorläufer (KFP) identifiziert und deren Dynamik direkt in lebenden Zellen verfolgt werden. Es konnte gezeigt werden, dass die KFP in einem Plasmamembran-nahen Bereich entstehen, in dem sie zuerst als punktförmige Partikel detektiert werden. Nach einer initialen, sphäroidalen Wachstumsphase elongieren die Partikel zu kleinen Filamentstückchen. Diese können miteinander fusionieren und werden über ihre Enden in das periphere Netzwerk integriert. Der Wachstumsprozess ist gekoppelt an eine kontinuierliche, langsame Bewegung in Richtung auf das Zellzentrum. Diese Motilität sistiert vollständig nach pharmakologisch induziertem Abbau der Aktinfilamente. In Zeitraffer-aufnahmen kann jedoch in derartig behandelten Zellen ein wesentlich schnellerer Transport, der in verschiedene Richtungen verläuft und durch lange Ruhephasen unterbrochen wird, beobachtet werden. Dieser Modus, der gelegentlich auch in unbehandelten Zellen gefunden wurde, ist abhängig von intakten Mikrotubuli. Erst durch Zerstörung der Aktinfilamente und der Mikrotubuli erlischt die Motilität der KFPs vollständig. Bei der Suche nach Regulatoren der Keratinnetzwerkbildung wurde die p38 MAPK als zentraler Faktor identifiziert. Erstmals konnte eine direkte räumliche und zeitliche Korrelation zwischen einer spezifischen Enzymaktivität durch Nachweis der phosphorylierten p38 MAPK, der daraus folgenden Phosphorylierung eines Keratins, hier Serin 73 des Keratin 8, und der daraus resultierenden Veränderung des Netzwerkaufbaus, d. h. der Ausbildung von Keratingranula, nachgewiesen werden. Diese koordinierten Veränderungen wurden in unterschiedlichen Stresssituationen in verschiedenen Zellsystemen und in Zellen mit mutierten Keratinen beobachtet. Genetische (shRNA) und pharmakologische Manipulationen der p38 MAPK-Aktivität deuten auf einen engen kausalen Zusammenhang hin.
Resumo:
During central nervous system myelination, oligodendrocytes extend membrane processes towards an axonal contact site which is followed by ensheathment resulting in a compacted multilamellar myelin sheath. The formation of this axon-glial unit facilitates rapid saltatory propagation of action potentials along the axon and requires the synthesis and transport of copious amounts of lipids and proteins to the axon-glial contact site. Fyn is a member of the Src family of non receptor tyrosine kinases and inserted into the inner leaflet of the oligodendrocyte membrane by acylation. Fyn activity plays a pivotal role in the maturation of oligodendrocytes and the myelination process. It was suggested previously that Fyn kinase can be stimulated by binding of a neuronal ligand to oligodendroglial F3/ contactin, a glycosyl-phosphatidyl-inositol anchored immunoglobulin superfamily (IgSF) member protein. It could be shown here, that neuronal cell adhesion molecule L1 binds to oligodendrocytes in an F3-dependent manner and activates glial Fyn. In the search for downstream participants of this novel axon-glial signalling cascade, heterogeneous nuclear ribonucleoprotein (hnRNP) A2 was identified as a novel Fyn target in oligodendrocytes. HnRNP A2 was known to be involved in the localisation of translationally repressed myelin basic protein (MBP) mRNA by binding to a cis acting A2 response element (A2RE) present in the 3’ untranslated region. Transport of MBP mRNAs occurs in RNA-protein complexes termed RNA granules and translational repression during transport is achieved by hnRNP A2-mediated recruitment of hnRNP E1 to the granules. It could be shown here, that Fyn activity leads to enhanced translation of reporter mRNA containing a part of the 3’ UTR of MBP including the A2RE. Furthermore hnRNP E1 seems to dissociate from RNA granules in response to Fyn activity and L1 binding. These findings suggest a novel form of neuron- glial communication: Axonal L1 binding to oligodendroglial F3 activates Fyn kinase. Activated Fyn phosphorylates hnRNP A2 leading to removal of hnRNP E1 from RNA granules initiating the translation of MBP mRNA. MBP is the second most abundant myelin protein and mice lacking this protein show a severe hypomyelination phenotype. Moreover, the brains of Fyn knock out mice contain reduced MBP levels and are hypomyelinated. Hence, L1-mediated MBP synthesis via Fyn as a central molecule could be part of a regulatory mechanism required for myelinogenesis in the central nervous system.
Resumo:
Die Mitglieder der Neurotrophin-Familie (NGF, BDNF, NT-3 und NT-4) sind sekretierte Neuropeptide, die eine bedeutende Rolle bei der Entwicklung von Nervenzellen und bei der Modulation der synaptischen Transmission spielen. Wenngleich eine aktivitätsabhängige Sekretion von BDNF bereits gezeigt werden konnte, wurden die subzelluläre Expression und die Ausschüttung der anderen Neurotrophine bislang nur unzureichend charakterisiert. Um die Expression und die Ausschüttung aller Neurotrophine unter identischen Bedingungen untersuchen zu können, wurde in der vorliegenden Arbeit das Expressionsmuster und die synaptische Ausschüttung GFP-markierter Neurotrophine in dissoziierten hippokampalen Neuronen mit Hilfe der konfokalen Fluoreszenz-Videomikroskopie zeitaufgelöst untersucht. Zwei Phänotypen konnten unterschieden werden: der distale vesikuläre Expressionstyp mit Neurotrophin-beinhaltenden Vesikeln in distalen Neuriten, und der proximale Expressionstyp mit einer diffusen Neurotrophin-Verteilung in den Neuriten und Neurotrophin-beinhaltenden Vesikeln im Soma des Neurons und in den proximalen Dendriten. Der distale vesikuläre Phänotyp entsprach einer Verteilung des entsprechenden Neurotrophins in die sekretorischen Granula des aktivitätsabhängigen Sekretionsweges, während der proximale Phänotyp den Transport eines Neurotrophins in den konstitutiven Sekretionsweg widerspiegelte. Alle Neurotrophine erreichten in hippokampalen Neuronen prinzipiell beide Sekretionswege. Jedoch gelangten BDNF und NT-3 mit einer größeren Effizienz in den regulierten Sekretionsweg als NT-4 und NGF (BDNF: in 98% aller Zellen, NT-3: 85%, NT-4: 23% und NGF: 46%). Neurotrophine besitzen, wie es für sekretorische Peptide üblich ist, eine Vorläufersequenz, die während der Reifung des Proteins proteolytisch abgespalten wird. Die Fusion dieser Präpro-Sequenz von BDNF mit der Sequenz des maturen NT-4 bewirkte einen effizienteren Transport von NT-4 in die sekretorischen Granula des regulierten Sekretionsweges, und zeigte die große Bedeutung der Präpro-Sequenz für das zelluläre Verteilungsmuster von Neurotrophinen. In Neuronen, in denen die Neurotrophine in den regulierten Sekretionsweg transportiert wurden, konnte eine aktivitätsabhängige Sekretion der Neurotrophine an postsynaptische Strukturen glutamaterger Synapsen beobachtet werden. Die aktivitätsabhängige postsynaptische Ausschüttung der Neurotrophine zeigte eine Heterogenität in der Kinetik der Sekretion (exponentieller Abfall des Neurotrophin-Signals mit Zeitkonstanten von tau = 121 bis 307s). Die Präinkubtion mit dem Protonen-Ionophor Monensin, welcher die Neutralisation des intragranulären pH-Wertes und somit die Solubilisierung der dicht gepackten Proteinstrukturen in den Vesikeln erzwingt, erhöhte die Geschwindigkeit der Neurotrophin-Ausschüttung auf den Wert des unter physiologischen Bedingungen schnellsten Neurotrophins NT-4. Dennoch blieb die Geschwindigkeit der Neurotrophin-Ausschüttung im Vergleich zur Neurotransmitter-Ausschüttung langsam (tau = 13 ± 2 s). Diese Daten belegen eindeutig, dass die Neutralisation der sekretorischen Granula die Geschwindigkeit der Neurotrophin-Ausschüttung kritisch determiniert und die Geschwindigkeit der Neurotrophin-Ausschüttung im Vergleich zur konventionellen Neurotransmitter-Ausschüttung langsam erfolgt. Des Weiteren konnte gezeigt werden, dass das Neurotrophin BDNF effizient in distale vesikuläre Strukturen von CA1 Pyramidenzellen organotypischer Schnittkulturen des Hippokampus sortiert wird. Die basalen elektrischen Eigenschaften von CA1 Pyramidenzellen BDNF-defizienter Mäuse sind vergleichbar zu den Eigenschaften von Wildtyp Mäusen. Sowohl das Eigenpotential der CA1 Pyramidenzellen, die Form der Aktionspotentiale als auch die evozierten Antworten der CA1 Pyramdenzellen auf eine gepaarte präsynaptische Stimulation der Schaffer-Kollateralen zeigten bei BDNF-/- -, BDNF+/- - und BDNF+/+ -Mäusen keine signifikanten Unterschiede. Die Fähigkeit der CA1 Pyramidenzellen auf eine hochfrequente Reizung mit einer Langzeitpotenzierung (LTP) der postsynaptischen Ströme zu reagieren ist jedoch bei den BDNF-defizienten Mäusen beinträchtigt. Eine verminderte Induktion von LTP war in den BDNF-defizienten Mäusen nach tetanischer Stimulation der präsynaptischen Schaffer-Kollateralen und simultaner postsynaptischer Depolarisation der CA1 Pyramidenzelle zu beobachten.
Resumo:
Das Zytoskelett eukaryotischer Zellen besteht aus drei verschiedenen Protein-Netzwerken: den Aktinfilamenten, Mikrotubuli und Intermediärfilamenten. Intermediärfilamente wurden ursprünglich als statische Strukturen angesehen, die die mechanische Stabilisierung der Zellen übernehmen. In den letzten Jahren hat sich dieses Bild jedoch geändert: Intermediärfilament-Netzwerke sind hochdynamisch und unterliegen kontinuierlichen Veränderungen, welche durch Phosphorylierungen reguliert werden. Sie interagieren mit anderen Zytoskelett-Proteinen und greifen in die Regulation von Schlüsselsignalwegen, die Zellwachstum und Zellteilung sowie Apoptose und Stressantwort bestimmen, ein. Die Mechanismen der Filamentplastizität konnten bisher jedoch nicht vollständig aufgeklärt werden. So ist beispielsweise unklar, wo Auf- und Abbau der Filamente stattfindet und welche Faktoren an der Netzwerkmodulation beteiligt sind. Ziel meiner Arbeit war es, einen Beitrag zur Aufklärung dieser Mechanismen am Beispiel der epithelialen Keratin-Intermediärfilamente zu leisten. Mit Hilfe von mikroskopischen Zeitrafferaufnahmen von fluoreszenzmarkierten Zellklonen wurden Nukleationszentren in der Zellperipherie identifiziert, in denen Keratinfilamentvorläufer gebildet werden. Es handelt sich dabei um fokale Adhäsionskomplexe, die als Anheftungsstellen zwischen der extrazellulären Matrix und dem intrazellulären Aktinfilament-System dienen. Es konnte gezeigt werden, dass diese Filamentvorläufer-Entstehung für alle untersuchten Keratinisoformen gültig ist und in epitelialen als auch nicht-epithelialen Zelltypen abläuft. Knock-Down der Adhäsionskomponente Talin verhinderte die Keratinfilamentbildung. Modulation der fokalen Adhäsionskinase, die den Auf- und Abbau der Adhäsionskomplexe koordiniert, beeinflusste ebenso die Bildung der Keratinfilamentnetzwerke. Es konnte weiterhin beobachtet werden, dass die N-terminalen Isoformen IE und IF des Zytolinkers Plectin in fokalen Adhäsionen lokalisieren und damit möglicherweise an der Vernetzung von Keratinfilamentvorläufern, Zelladhäsionen und Aktinfilamenten beteiligt sind. Letztlich stellte sich heraus, dass die Bildung der Keratinfilamentvorläufer unabhängig von Proteintranslation ist. In den mikroskopischen Zeitrafferaufnahmen wurde im Anschluss an die Keratinfilamentbildung ein kontinuierlicher zentripetaler Transport der wachsenden Vorläuferpartikel beobachtet. An Hand von pharmakologischen Experimenten konnte gezeigt werden, dass dieser Transport Aktinfilament-abhängig ist. Zeitgleich kommt es zu Partikelfusion und Integration in das periphere Netzwerk, das sich weiterhin in Richtung auf das Zellzentrum bewegt. Mit Hilfe von Photoaktivierungsversuchen und Zellfusionsexperimenten konnte die Hypothese bestätigt werden, dass der Abbau der einwandernden Keratinfilamente in lösliche, rasch diffusible Zwischenstufen den kontinuierlichen peripheren Neuaufbau ermöglicht. Aus den Beobachtungen und bereits bekannten Ergebnissen wurde ein Modell des Keratin-Zyklus entwickelt, das die folgenden Stadien umfasst: Nukleation von Keratinfilamentvorläufern an fokalen Adhäsionen in der Zellperipherie, Elongation und Fusion der Keratinfilamentvorläufer bei zeitgleichem Aktinfilament-abhängigem zentripetalen Transport, Integration der Keratinfilamentvorläufer in das periphere Netzwerk, Bündelung der Filamente, Filamentabbau in lösliche Untereinheiten und Neubeginn des Zyklus in der Zellperipherie. Eine Störung dieses Zyklus liegt bei mutierten Keratinen vor, welche die Ursache von Blasen-bildenden Hauterkrankungen sind. In der vorliegenden Arbeit wurde am Beispiel von Keratin 6a-Mutanten, welche die Hauterkrankung Pachyonychia congenita verursachen, gezeigt, dass bei diesen Keratinen die Nukleation zwar im Bereich der Adhäsionskomplexe regelrecht abläuft, die anschließende Elongation und Netzwerkbildung aber gestört ist, so dass statt dessen kurzlebige, hyperphosphorylierte Granula entstehen. Der resultierende frustrane Keratin-Zyklus in der Zellperipherie ist stark beschleunigt und kann durch p38-Inhibierung gestoppt werden. Bei Proteasomeninhibierung wird der Zyklus in Richtung der Granulabildung verschoben. In dieser Arbeit wird erstmals das Keratin-Tretmühlen-Modell vorgestellt, das den regulierbaren Auf- und Abbau-Zyklus des Keratinnetzwerks beschreibt. Damit liegen testbare Hypothesen für die Aufklärung der Keratinfilament-Plastizität in physiologischen und pathologischen Situationen vor, die nach unseren ersten Ergebnissen auch von Relevanz für andere Intermediärfilamenttypen sind.
Resumo:
In der Herstellung fester Darreichungsformen umfasst die Granulierung einen komplexen Teilprozess mit hoher Relevanz für die Qualität des pharmazeutischen Produktes. Die Wirbelschichtgranulierung ist ein spezielles Granulierverfahren, welches die Teilprozesse Mischen, Agglomerieren und Trocknen in einem Gerät vereint. Durch die Kombination mehrerer Prozessstufen unterliegt gerade dieses Verfahren besonderen Anforderungen an ein umfassendes Prozessverständnis. Durch die konsequente Verfolgung des PAT- Ansatzes, welcher im Jahre 2004 durch die amerikanische Zulassungsbehörde (FDA) als Guideline veröffentlicht wurde, wurde der Grundstein für eine kontinuierliche Prozessverbesserung durch erhöhtes Prozessverständnis, für Qualitätserhöhung und Kostenreduktion gegeben. Die vorliegende Arbeit befasste sich mit der Optimierung der Wirbelschicht-Granulationsprozesse von zwei prozesssensiblen Arzneistoffformulierungen, unter Verwendung von PAT. rnFür die Enalapril- Formulierung, einer niedrig dosierten und hochaktiven Arzneistoffrezeptur, wurde herausgefunden, dass durch eine feinere Zerstäubung der Granulierflüssigkeit deutlich größere Granulatkörnchen erhalten werden. Eine Erhöhung der MassRatio verringert die Tröpfchengröße, dies führt zu größeren Granulaten. Sollen Enalapril- Granulate mit einem gewünschten D50-Kornverteilung zwischen 100 und 140 um hergestellt werden, dann muss die MassRatio auf hohem Niveau eingestellt werden. Sollen Enalapril- Granulate mit einem D50- Wert zwischen 80 und 120µm erhalten werden, so muss die MassRatio auf niedrigem Niveau eingestellt sein. Anhand der durchgeführten Untersuchungen konnte gezeigt werden, dass die MassRatio ein wichtiger Parameter ist und zur Steuerung der Partikelgröße der Enalapril- Granulate eingesetzt werden kann; unter der Voraussetzung dass alle anderen Prozessparameter konstant gehalten werden.rnDie Betrachtung der Schnittmengenplots gibt die Möglichkeit geeignete Einstellungen der Prozessparameter bzw. Einflussgrößen zu bestimmen, welche dann zu den gewünschten Granulat- und Tabletteneigenschaften führen. Anhand der Lage und der Größe der Schnittmenge können die Grenzen der Prozessparameter zur Herstellung der Enalapril- Granulate bestimmt werden. Werden die Grenzen bzw. der „Design Space“ der Prozessparameter eingehalten, kann eine hochwertige Produktqualität garantiert werden. rnUm qualitativ hochwertige Enalapril Tabletten mit der gewählten Formulierung herzustellen, sollte die Enalapril- Granulation mit folgenden Prozessparametern durchgeführt werden: niedrige Sprührate, hoher MassRatio, einer Zulufttemperatur von mindestens > 50 °C und einer effektiven Zuluftmenge < 180 Nm³/h. Wird hingegen eine Sprührate von 45 g/min und eine mittlere MassRatio von 4.54 eingestellt, so muss die effektive Zuluftmenge mindestens 200 Nm³/h und die Zulufttemperatur mindestens 60 °C betragen, um eine vorhersagbar hohe Tablettenqualität zu erhalten. Qualität wird in das Arzneimittel bereits während der Herstellung implementiert, indem die Prozessparameter bei der Enalapril- Granulierung innerhalb des „Design Space“ gehalten werden.rnFür die Metformin- Formulierung, einer hoch dosierten aber wenig aktiven Arzneistoffrezeptur wurde herausgefunden, dass sich der Wachstumsmechanismus des Feinanteils der Metformin- Granulate von dem Wachstumsmechanismus der D50- und D90- Kornverteilung unterscheidet. Der Wachstumsmechanismus der Granulate ist abhängig von der Partikelbenetzung durch die versprühten Flüssigkeitströpfchen und vom Größenverhältnis von Partikel zu Sprühtröpfchen. Der Einfluss der MassRatio ist für die D10- Kornverteilung der Granulate vernachlässigbar klein. rnMit Hilfe der Störgrößen- Untersuchungen konnte eine Regeleffizienz der Prozessparameter für eine niedrig dosierte (Enalapril)- und eine hoch dosierte (Metformin) Arzneistoffformulierung erarbeitet werden, wodurch eine weitgehende Automatisierung zur Verringerung von Fehlerquellen durch Nachregelung der Störgrößen ermöglicht wird. Es ergibt sich für die gesamte Prozesskette ein in sich geschlossener PAT- Ansatz. Die Prozessparameter Sprührate und Zuluftmenge erwiesen sich als am besten geeignet. Die Nachregelung mit dem Parameter Zulufttemperatur erwies sich als träge. rnFerner wurden in der Arbeit Herstellverfahren für Granulate und Tabletten für zwei prozesssensible Wirkstoffe entwickelt. Die Robustheit der Herstellverfahren gegenüber Störgrößen konnte demonstriert werden, wodurch die Voraussetzungen für eine Echtzeitfreigabe gemäß dem PAT- Gedanken geschaffen sind. Die Kontrolle der Qualität des Produkts findet nicht am Ende der Produktions- Prozesskette statt, sondern die Kontrolle wird bereits während des Prozesses durchgeführt und basiert auf einem besseren Verständnis des Produktes und des Prozesses. Außerdem wurde durch die konsequente Verfolgung des PAT- Ansatzes die Möglichkeit zur kontinuierlichen Prozessverbesserung, zur Qualitätserhöhung und Kostenreduktion gegeben und damit das ganzheitliche Ziel des PAT- Gedankens erreicht und verwirklicht.rn
Resumo:
In the central nervous system (CNS), oligodendrocytes form the multilamellar and compacted myelin sheath by spirally wrapping around defined axons with their specialised plasma membrane. Myelin is crucial for the rapid saltatory conduction of nerve impulses and for the preservation of axonal integrity. The absence of the major myelin component Myelin Basic Protein (MBP) results in an almost complete failure to form compact myelin in the CNS. The mRNA of MBP is sorted to cytoplasmic RNA granules and transported to the distal processes of oligodendrocytes in a translationally silent state. A main mediator of MBP mRNA localisation is the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 which binds to the cis-acting A2 response element (A2RE) in the 3’UTR of MBP mRNA. A signalling cascade had been identified that triggers local translation of MBP at the axon-glial contact site, involving the neuronal cell adhesion molecule (CAM) L1, the oligodendroglial plasma membrane-tethered Fyn kinase and Fyn-dependent phosphorylation of hnRNP A2. This model was confirmed here, showing that L1 stimulates Fyn-dependent phosphorylation of hnRNP A2 and a remodelling of A2-dependent RNA granule structures. Furthermore, the RNA helicase DDX5 was confirmed here acting together with hnRNP A2 in cytoplasmic RNA granules and is possibly involved in MBP mRNA granule dynamics.rnLack of non-receptor tyrosine kinase Fyn activity leads to reduced levels of MBP and hypomyelination in the forebrain. The multiadaptor protein p130Cas and the RNA-binding protein hnRNP F were verified here as additional targets of Fyn in oligodendrocytes. The findings point at roles of p130Cas in the regulation of Fyn-dependent process outgrowth and signalling cascades ensuring cell survival. HnRNP F was identified here as a novel constituent of oligodendroglial cytoplasmic RNA granules containing hnRNP A2 and MBP mRNA. Moreover, it was found that hnRNP F plays a role in the post-transcriptional regulation of MBP mRNA and that defined levels of hnRNP F are required to facilitate efficient synthesis of MBP. HnRNP F appears to be directly phosphorylated by Fyn kinase what presumably contributes to the initiation of translation of MBP mRNA at the plasma membrane.rnFyn kinase signalling thus affects many aspects of oligodendroglial physiology contributing to myelination. Post-transcriptional control of the synthesis of the essential myelin protein MBP by Fyn targets is particularly important. Deregulation of these Fyn-dependent pathways could thus negatively influence disorders involving the white matter of the nervous system.rnrn
Resumo:
Die Metalloprotease Ovastacin, ein Vertreter der Astacin-Familie, wurde erstmals 2004 beschrieben. Im Ovar von Säugetieren ist Ovastacin-mRNA im Zeitfenster vom Stadium der Sekundärfollikel bis kurz nach der Befruchtung der Eizelle zu finden. Der Expressionsort und -zeitpunkt sowie die Sequenzähnlichkeit von über 60% mit sogenannten „Schlüpfenzymen“ (engl. hatching enzymes), die man in den Eizellen und Zygoten niederer Wirbeltiere und Wirbelloser gefunden hatte, ließen die Vermutung aufkommen, es könnte sich hier um das Säugerhomolog dieser Proteasen handeln. Generell lösen hatching Enzyme die derben embryonalen Hüllstrukturen (bei Säugern die Zona pellucida, ZP) beim Schlüpfvorgang auf. Die essentielle Bedeutung des Ovastacins für die Befruchtung wird durch die um ca. 30% reduzierte Fruchtbarkeit von Ovastacin defizienten Mäusen belegt. Hochinteressant war in diesem Zusammenhang die Entdeckung des Ovastacins in den Cortikalgranula der Oocyten sowie seine Fähigkeit, das Zona pellucida Protein 2 zu schneiden. Die dadurch bewirkte Verhärtung der Zona pellucida verhindert das Eindringen weiterer Spermien, das heißt sie baut eine Barriere gegen Polyspermie auf. Ziel dieser Arbeit war es, Belege für die physiologische Funktion des Ovastacins zu finden. Vor allem galt es, potentielle Aktivatoren zu identifizieren, da das Enzym wie alle Astacine als inaktive Vorstufe gebildet wird, die proteolytisch aktiviert werden muss. Zu diesem Zweck exprimierte ich rekombinantes Pro-Ovastacin in Insektenzellen. Aktivierungsstudien in vitro zeigten, dass ein saures Milieu zu einer Aktivierung führt, ohne die Abspaltung des Propeptids zu bewirken. Sequenzalignments und ein homologes Strukturmodell des Ovastacins wiesen auf Trypsin- oder Elastase-ähnliche Serinproteasen als potentielle Aktivierungsenzyme hin. Tatsächlich konnte mit diesen beiden Proteasetypen zum ersten Mal aktives Ovastacin aus Pro-Ovastacin erzeugt werden. Trypsin kommt als physiologischer Aktivator allerdings nicht in Betracht, da es bisher in keinem der Gewebe nachgewiesen werden konnte, in dem Ovastacin exprimiert wird. Die neutrophile Elastase dagegen konnte in der Leber, im Herz sowie im Blutplasma nachgewiesen werden. Mit Hilfe spezifischer Antikörper konnte das Herz als Expressionsort für Ovastacin bestätigt werden. Somit wäre Elastase ein potentieller physiologischer Aktivator von Ovastacin. Die Identifikation des Ovastacins in Geweben wie Leber, Herz, Nabelschnur und im Blutplasma weist auf eine Rolle der Protease in proteolytischen Netzwerken außerhalb der Spermien-Ei-Interaktion hin. Die Bedeutung der biologischen Kontrolle des Ovastacins bei der Befruchtung der Säugereizelle wird durch die Beobachtung untermauert, dass das Leberprotein Fetuin B als physiologischer Ovastacininhibitor fungiert und dadurch eine vorzeitige Verhärtung der Zona pellucida verhindert, die andernfalls die Penetration von Spermien prinzipiell verhindern würde.
Resumo:
Im zentralen Nervensystem (ZNS) myelinisieren Oligodendrozyten neuronale Axone, indem sie ihre Zellfortsätze mehrfach um axonale Segmente wickeln. Die Ausbildung dieser multilamellaren Membranstapel ermöglicht eine saltatorische und damit rasche und energie-effiziente Erregungsleitung (Nave, 2010). Eine Schädigung des Myelins beeinträchtigt die Reizweiterleitung und führt zur Degeneration der Axone, wie es zum Beispiel bei der Multiplen Sklerose der Fall ist. Das Myelin basische Protein (MBP) ist ein Hauptbestandteil des Myelin und ist essentiell für die Kompaktierung der Myelinmembran (Wood et al., 1984). Die MBP mRNA wird in hnRNP A2 enthaltenen RNA Granulen in einem translations-inaktiven Zustand zu den distalen Fortsätzen transportiert. Vermittelt durch axonale Signale wird nach axo-glialem Kontakt die Translation von MBP ermöglicht (White et al., 2008). Der genaue Mechanismus der differentiellen Genregulation des MBP Proteins ist bisher nur unzureichend aufgeklärt. In der vorliegenden Arbeit konnte eine kleine regulatorische RNA (sncRNA) identifiziert werden, welche über die seed Region mit der MBP mRNA interagieren und die Translation regulieren kann. In primären Oligodendrozyten führt die Überexpression der sncRNA-715 zu reduzierten MBP Protein Mengen und die Blockierung der endogenen sncRNA-715 führt zu einer gesteigerten MBP Synthese. Interessanterweise korreliert während der Differenzierung der Oligodendrozyten in vitro und in vivo die Synthese des MBP Proteins invers mit der Expression der sncRNA-715. In Oligodendrozyten beeinflusst eine experimentell erhöhte sncRNA-715 Menge die Zellmorphologie und induziert Apoptose. Weiterhin ist sncRNA-715 in zytoplasmatischen granulären Strukturen lokalisiert und assoziiert mit MBP mRNA in hnRNP A2 Transport- Granula. Diese Ergebnisse lassen vermuten, dass sncRNA-715 ein Bestandteil der hnRNP A2 Granula sein könnte und dort spezifisch die Translation der MBP mRNA während des Lokalisationsprozesses inhibiert. In chronischen MS Läsionen sind Olig2+-Zellen zu finden. Obwohl die MBP mRNA in diesen Läsionen nachzuweisen ist, kann kein Protein synthetisiert werden. In dieser Arbeit konnte gezeigt werden, dass in diesen Läsionen die Expression der sncRNA-715 erhöht ist. SncRNA-715 könnte die Translation von MBP verhindern und folglich als Inhibitor der Remyelinisierung während des Krankheitsverlaufs fungieren. Schwann-Zellen sind die myelinisierenden Zellen im peripheren Nervensystem (PNS). Im Zuge der Myelinisierung wird die MBP mRNA in diesen Gliazellen ebenfalls in die distalen Fortsätze transportiert und dort lokal translatiert und in die Myelinmembran eingebaut (Trapp et al., 1987). Im Gegensatz zum ZNS ist im PNS nur wenig über den Transportmechanismus der mRNA bekannt (Masaki, 2012). Es ist es sehr wahrscheinlich, dass in Schwann-Zellen und Oligodendrozyten die Lokalisation und die translationale Hemmung der MBP mRNA ähnlichen Mechanismen unterliegen. In der vorliegenden Arbeit konnte gezeigt werden, dass hnRNP A2 und sncRNA-715 in Schwann-Zellen exprimiert werden und in zytoplasmatischen Granula-ähnlichen Strukturen lokalisiert sind. Während der Differenzierung dieser Gliazellen in vivo und in vitro korreliert die Expression der sncRNA-715 invers mit der Synthese des MBP Proteins. HnRNP A2 und sncRNA-715 scheinen in Schwann-Zellen assoziiert zu sein und könnten wie in Oligodendrozyten den Transport der MBP mRNA vermitteln.
Resumo:
Die myeloide Zelllinie MUTZ-3 konnte als geeignetes Modellsystem zur Charakterisierung der TREM-1-Signaltransduktion etabliert werden, da diese TREM-1 und dessen essentielles Adaptermoleküle DAP12 funktional exprimiert. Übereinstimmend mit bisherigen Daten wurden die Kinasen PI3K und p38-MAPK als wichtige Regulatoren in der Signalweiterleitung nach TREM-1-Aktivierung identifiziert, wobei sich einige Unterschiede in der exakten Signalhierarchie zwischen monozytären und granulozytären Zellen ergaben. So erfolgt die Aktivierung von PI3K und p38-MAPK in PMN unabhängig voneinander und in monozytären Zellen findet die Aktivierung von p38-MAPK vor der Akt-Phosphorylierung statt und ist für Letztere notwendig. Zudem ist die Ca2+-Mobilisierung in PMN nur von PI3K abhängig und in monozytären Zellen von PI3K und p38-MAPK. Bei der durch TLR- oder NLR-Koligation gesteigerten TREM-1-Aktivierung sind PI3K und p38-MAPK ebenfalls zentrale Regulatoren. Es ergaben sich ebenfalls Unterschiede in der exakten TREM-1-Signaltransduktion.rnrnEin Mausmodell für invasive Aspergillose (IA) wurde erfolgreich etabliert, wobei die wichtige Rolle der PMN bei der Abwehr von Pilzinfektionen durch deren Depletion mit unterschiedlichen Antikörpern belegt wurde. Für das Abtöten von A. fumigatus-Konidien sind oxidative und nicht-oxidative PMN-Effektormechanismen notwendig. Dabei konnte die essentielle Rolle der oxidativen PMN-Effektorfunktionen anhand NADPH-Oxidase-defizienter p47phox-/- und gp91phox-/- Mäuse für das Überleben von Pilzinfektionen gezeigt werden. Dagegen war die Infektion von Neutrophiler Elastase defizienter ELANE Mäuse nicht letal. Dies deutet darauf hin, dass diese als prototypische Serinprotease und wichtiger Bestandteil der NET-Formation nicht essentiell für das Überleben von IA ist oder durch andere, nicht-oxidative Effektormechanismen kompensiert werden kann. Keinen Einfluss auf die IA hatte die Depletion von Arginin mittels ADI-PEG, da weder das Überleben der Mäuse noch das Abtöten der Pilzkonidien beeinflusst wurde. Außerdem wurden keine Veränderung in der Einwanderung und Aktivierung von PMN nach Infektion quantifiziert. Dagegen induzierte die Defizienz in ADAMTS13 (ADAMTS13-/- Mäuse) eine verminderte Rekrutierung von PMN, einhergehend mit erhöhter Mortalität, vermindertem Abtöten von A. fumigatus-Konidien und erhöhter Schädigung der Lunge bei IA. Da in vitro keine generellen oder pilzspezifischen Defekte der PMN quantifiziert wurden, muss ADAMTS13 die Einwanderung der PMN beeinflussen. Normalerweise spaltet die Protease ADAMTS13 den von-Willebrand-Faktor (vWF), der die Quervernetzung und das Anhaften von Blutplättchen an beschädigte Gefäßwände steuert. Ob und wie ADAMTS13 oder der vWF die verminderte PMN-Einwanderung bei Pilzinfektionen verursacht, muss weiter untersucht werden.rnrnZusammenfassend verbessern die erhaltenen Daten für eine zellspezifische TREM-1-Signaltransduktion, ein von oxidativen und nicht-oxidativen PMN-Effektorfunktionen abhängiges sowie Arginin-unabhängiges Abtöten vom Pilz A. fumigatus als auch der Einfluss von ADAMTS13 und vWF bei der Rekrutierung von PMN nach A. fumigatus-Infektion unser Verständnis der angeborenen Immunität. Diese Erkenntnisse dienen der zukünftigen Entwicklung von Therapien zur Behandlung von schweren Entzündungsreaktionen wie Aspergillose und Sepsis.
Resumo:
Die Myelinisierung neuronaler Axone ermöglicht eine schnelle und energieeffiziente Weiterleitung von Informationen im Nervensystem. Durch lokale Synthese von Myelinproteinen kann die Myelinschicht, zeitlich und räumlich reguliert, gebildet werden. Dieser Prozess ist abhängig von verschiedensten axonalen Eigenschaften und muss damit lokal reguliert werden. Die Myelinisierung im zentralen sowie im peripheren Nervensystem hängt unter anderem stark von kleinen regulatorischen RNA Molekülen ab. In Oligodendrozyten wird das Myelin Basische Protein (MBP) von der sncRNA715 translational reguliert, indem diese direkt innerhalb der 3’UTR der Mbp mRNA bindet und damit die Proteinsynthese verhindert. Mbp mRNA wird in hnRNP A2‐enthaltenen RNA Granula in die Zellperipherie transportiert, wo in Antwort auf axonale Signale die membranständige Tyrosin‐ Kinase Fyn aktiviert wird, welche Granula‐Komponenten wie hnRNP A2 und F phosphoryliert wodurch die lokale Translation initiiert wird. Während des Transports wird die mRNA durch die Bindung der sncRNA715 translational reprimiert. SncRNAs bilden zusammen mit Argonaut‐Proteinen den microRNA induced silencing complex (miRISC), welcher die translationale Inhibition oder den Abbau von mRNAs vermittelt. In der vorliegenden Arbeit sollte zum einen die Regulation der sncRNA715‐abhängigen translationalen Repression der Mbp mRNA in oligodendroglialen Zellen genauer untersucht werden und im zweiten Teil wurde die Rolle der sncRNA715 in den myelinbildenden Zellen des peripheren Nervensystems, den Schwann Zellen, analysiert. Es konnte in oligodendroglialen Zellen die mRNA‐Expression der vier, in Säugern bekannten Argonaut‐Proteinen nachgewiesen werden. Außerdem konnten die beiden Proteine Ago1 und Ago2 in vitro sowie in vivo detektiert werden. Ago2 interagiert mit hnRNP A2, Mbp mRNA und sncRNA715, womit es als neue Komponente des Mbp mRNA Transportgranulas identifiziert werden konnte. Des Weiteren colokalisiert Ago2 mit der Fyn‐Kinase und alle vier Argonaut‐Proteine werden Fyn‐abhängig Tyrosin‐phosphoryliert. Die Fyn‐abhängige Phosphorylierung der Granula‐Komponenten in Antwort auf axo‐glialen Kontakt führt zum Zerfall des RNA‐Granulas und zur gesteigerten MBP Proteinsynthese. Dies wird möglicherweise durch Abstoßungskräfte der negativ geladenen phosphorylierten Proteine vermittelt, wodurch diese sich voneinander und von der mRNA entfernen. Durch die Ablösung des miRISCs von der Mbp mRNA wird die Translation möglicherweise reaktiviert und die Myelinisierung kann starten. Mit der Identifizierung von Ago2 als neuer Mbp mRNA Transportgranula‐Komponente konnte ein weiterer Einblick in die Regulation der lokalen Translation von MBP gewährt werden. Das Verständnis dieses Prozesses ist entscheidend für die Entwicklung neuer Therapien von demyelinisierenden Erkrankungen, da neue Faktoren als eventuelle Ziele für pharmakologische Manipulationen identifiziert und möglichweise neue Therapiemöglichkeiten entstehen könnten. Im zweiten Teil der Arbeit wurde die translationale Regulation von Mbp mRNA in Schwann Zellen untersucht. Auch Schwann Zell‐Mbp wird als mRNA translational inaktiviert zur axo‐glialen Kontaktstelle transportiert, wo vermutlich auch lokale Translation in Antwort auf spezifische Signale stattfindet. Allerdings bleiben die genauen Mechanismen der mRNA‐Lokalisation und damit verbundenen translationalen Repression bislang ungeklärt. Es konnte hier gezeigt werden, dass auch in Schwann Zellen die sncRNA715 exprimiert wird und die Translation von Mbp reguliert. Überexpression der synthetischen sncRNA715 führt zu einer signifikanten Reduktion der MBP Proteinmengen in differenzierten primären Schwann Zellen. Damit kann vermutet werden, dass die Regulation der lokalen MBP Proteinsynthese in Schwann Zellen der in Oligodendrozyten ähnelt