10 resultados para Geometry, Algebraic.
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishabilty and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be interpreted as the spaces of sections of certain flat vector bundles over Q. With this technique, various results pertaining to the problem of quantum indistinguishability are reproduced in a clear and systematic way. Our method is also used in order to give a global formulation of the BR construction. As a result of this analysis, it is found that the single-valuedness condition of BR is inconsistent. Additionally, a proposal aiming at establishing the Fermi-Bose alternative, within our approach, is made.
Resumo:
In den letzten fünf Jahren hat sich mit dem Begriff desspektralen Tripels eine Möglichkeit zur Beschreibungdes an Spinoren gekoppelten Gravitationsfeldes auf(euklidischen) nichtkommutativen Räumen etabliert. Die Dynamik dieses Gravitationsfeldes ist dabei durch diesogenannte spektrale Wirkung, dieSpur einer geeigneten Funktion des Dirac-Operators,bestimmt. Erstaunlicherweise kann man die vollständige Lagrange-Dichtedes (an das Gravitationsfeld gekoppelten) Standardmodellsder Elementarteilchenphysik, also insbesondere auch denmassegebenden Higgs-Sektor, als spektrale Wirkungeines entsprechenden spektralen Tripels ableiten. Diesesspektrale Tripel ist als Produkt des spektralenTripels der (kommutativen) Raumzeit mit einem speziellendiskreten spektralen Tripel gegeben. In der Arbeitwerden solche diskreten spektralen Tripel, die bis vorKurzem neben dem nichtkommutativen Torus die einzigen,bekannten nichtkommutativen Beispiele waren, klassifiziert. Damit kannnun auch untersucht werden, inwiefern sich dasStandardmodell durch diese Eigenschaft gegenüber anderenYang-Mills-Higgs-Theorien auszeichnet. Es zeigt sichallerdings, dasses - trotz mancher Einschränkung - eine sehr große Zahl vonModellen gibt, die mit Hilfe von spektralen Tripelnabgeleitet werden können. Es wäre aber auch denkbar, dass sich das spektrale Tripeldes Standardmodells durch zusätzliche Strukturen,zum Beispiel durch eine darauf ``isometrisch'' wirkendeHopf-Algebra, auszeichnet. In der Arbeit werden, um dieseFrage untersuchen zu können, sogenannte H-symmetrischespektrale Tripel, welche solche Hopf-Isometrien aufweisen,definiert.Dabei ergibt sich auch eine Möglichkeit, neue(H-symmetrische) spektrale Tripel mit Hilfe ihrerzusätzlichen Symmetrienzu konstruieren. Dieser Algorithmus wird an den Beispielender kommutativen Sphäre, deren Spin-Geometrie hier zumersten Mal vollständig in der globalen, algebraischen Sprache der NichtkommutativenGeometrie beschrieben wird, sowie dem nichtkommutativenTorus illustriert.Als Anwendung werden einige neue Beipiele konstruiert. Eswird gezeigt, dass sich für Yang-Mills Higgs-Theorien, diemit Hilfe von H-symmetrischen spektralen Tripeln abgeleitetwerden, aus den zusätzlichen Isometrien Einschränkungen andiefermionischen Massenmatrizen ergeben. Im letzten Abschnitt der Arbeit wird kurz auf dieQuantisierung der spektralen Wirkung für diskrete spektraleTripel eingegangen.Außerdem wird mit dem Begriff des spektralen Quadrupels einKonzept für die nichtkommutative Verallgemeinerungvon lorentzschen Spin-Mannigfaltigkeiten vorgestellt.
Resumo:
1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten. Die maximale Anzahl mu^n(d) von Singularitäten auf einer Hyperfläche vom Grad d im P^n(C) ist nur in sehr wenigen Fällen bekannt, im P^3(C) beispielsweise nur für d<=6. Abgesehen von solchen Ausnahmen existieren nur obere und untere Schranken. 2. Teil: Neue Konstruktionen. Für kleine Grade d ist es oft möglich, bessere Resultate zu erhalten als jene, die durch allgemeine Schranken gegeben sind. In dieser Arbeit beschreiben wir einige algorithmische Ansätze hierfür, von denen einer Computer Algebra in Charakteristik 0 benutzt. Unsere anderen algorithmischen Methoden basieren auf einer Suche über endlichen Körpern. Das Liften der so experimentell gefundenen Hyperflächen durch Ausnutzung ihrer Geometrie oder Arithmetik liefert beispielsweise eine Fläche vom Grad 7 mit $99$ reellen gewöhnlichen Doppelpunkten und eine Fläche vom Grad 9 mit 226 gewöhnlichen Doppelpunkten. Diese Konstruktionen liefern die ersten unteren Schranken für mu^3(d) für ungeraden Grad d>5, die die allgemeine Schranke übertreffen. Unser Algorithmus hat außerdem das Potential, auf viele weitere Probleme der algebraischen Geometrie angewendet zu werden. Neben diesen algorithmischen Methoden beschreiben wir eine Konstruktion von Hyperflächen vom Grad d im P^n mit vielen A_j-Singularitäten, j>=2. Diese Beispiele, deren Existenz wir mit Hilfe der Theorie der Dessins d'Enfants beweisen, übertreffen die bekannten unteren Schranken in den meisten Fällen und ergeben insbesondere neue asymptotische untere Schranken für j>=2, n>=3. 3. Teil: Visualisierung. Wir beschließen unsere Arbeit mit einer Anwendung unserer neuen Visualisierungs-Software surfex, die die Stärken mehrerer existierender Programme bündelt, auf die Konstruktion affiner Gleichungen aller 45 topologischen Typen reeller kubischer Flächen.
Resumo:
Präsentiert wird ein vollständiger, exakter und effizienter Algorithmus zur Berechnung des Nachbarschaftsgraphen eines Arrangements von Quadriken (Algebraische Flächen vom Grad 2). Dies ist ein wichtiger Schritt auf dem Weg zur Berechnung des vollen 3D Arrangements. Dabei greifen wir auf eine bereits existierende Implementierung zur Berechnung der exakten Parametrisierung der Schnittkurve von zwei Quadriken zurück. Somit ist es möglich, die exakten Parameterwerte der Schnittpunkte zu bestimmen, diese entlang der Kurven zu sortieren und den Nachbarschaftsgraphen zu berechnen. Wir bezeichnen unsere Implementierung als vollständig, da sie auch die Behandlung aller Sonderfälle wie singulärer oder tangentialer Schnittpunkte einschließt. Sie ist exakt, da immer das mathematisch korrekte Ergebnis berechnet wird. Und schließlich bezeichnen wir unsere Implementierung als effizient, da sie im Vergleich mit dem einzigen bisher implementierten Ansatz gut abschneidet. Implementiert wurde unser Ansatz im Rahmen des Projektes EXACUS. Das zentrale Ziel von EXACUS ist es, einen Prototypen eines zuverlässigen und leistungsfähigen CAD Geometriekerns zu entwickeln. Obwohl wir das Design unserer Bibliothek als prototypisch bezeichnen, legen wir dennoch größten Wert auf Vollständigkeit, Exaktheit, Effizienz, Dokumentation und Wiederverwendbarkeit. Über den eigentlich Beitrag zu EXACUS hinaus, hatte der hier vorgestellte Ansatz durch seine besonderen Anforderungen auch wesentlichen Einfluss auf grundlegende Teile von EXACUS. Im Besonderen hat diese Arbeit zur generischen Unterstützung der Zahlentypen und der Verwendung modularer Methoden innerhalb von EXACUS beigetragen. Im Rahmen der derzeitigen Integration von EXACUS in CGAL wurden diese Teile bereits erfolgreich in ausgereifte CGAL Pakete weiterentwickelt.
Resumo:
In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.
Resumo:
Intersection theory on moduli spaces has lead to immense progress in certain areas of enumerative geometry. For some important areas, most notably counting stable maps and counting stable sheaves, it is important to work with a virtual fundamental class instead of the usual fundamental class of the moduli space. The crucial prerequisite for the existence of such a class is a two-term complex controlling deformations of the moduli space. Kontsevich conjectured in 1994 that there should exist derived version of spaces with this specific property. Another hint at the existence of these spaces comes from derived algebraic geometry. It is expected that for every pair of a space and a complex controlling deformations of the space their exists, under some additional hypothesis, a derived version of the space having the chosen complex as cotangent complex. In this thesis one version of these additional hypothesis is identified. We then show that every space admitting a two-term complex controlling deformations satisfies these hypothesis, and we finally construct the derived spaces.
Resumo:
If the generic fibre f−1(c) of a Lagrangian fibration f : X → B on a complex Poisson– variety X is smooth, compact, and connected, it is isomorphic to the compactification of a complex abelian Lie–group. For affine Lagrangian fibres it is not clear what the structure of the fibre is. Adler and van Moerbeke developed a strategy to prove that the generic fibre of a Lagrangian fibration is isomorphic to the affine part of an abelian variety.rnWe extend their strategy to verify that the generic fibre of a given Lagrangian fibration is the affine part of a (C∗)r–extension of an abelian variety. This strategy turned out to be successful for all examples we studied. Additionally we studied examples of Lagrangian fibrations that have the affine part of a ramified cyclic cover of an abelian variety as generic fibre. We obtained an embedding in a Lagrangian fibration that has the affine part of a C∗–extension of an abelian variety as generic fibre. This embedding is not an embedding in the category of Lagrangian fibrations. The C∗–quotient of the new Lagrangian fibration defines in a natural way a deformation of the cyclic quotient of the original Lagrangian fibration.
Resumo:
Let k := bar{F}_p for p > 2, W_n(k) := W(k)/p^n and X_n be a projective smooth W_n(k)-scheme which is W_{n+1}(k)-liftable. For all n > 1, we construct explicitly a functor, which we call the inverse Cartier functor, from a subcategory of Higgs bundles over X_n to a subcategory of flat Bundles over X_n. Then we introduce the notion of periodic Higgs-de Rham flows and show that a periodic Higgs-de Rham flow is equivalent to a Fontaine-Faltings module. Together with a p-adic analogue of Riemann-Hilbert correspondence established by Faltings, we obtain a coarse p-adic Simpson correspondence.
Resumo:
Stratosphärische Partikel sind typischerweise mit dem bloßen Auge nicht wahrnehmbar. Dennoch haben sie einen signifikanten Einfluss auf die Strahlungsbilanz der Erde und die heteorogene Chemie in der Stratosphäre. Kontinuierliche, vertikal aufgelöste, globale Datensätze sind daher essenziell für das Verständnis physikalischer und chemischer Prozesse in diesem Teil der Atmosphäre. Beginnend mit den Messungen des zweiten Stratospheric Aerosol Measurement (SAM II) Instruments im Jahre 1978 existiert eine kontinuierliche Zeitreihe für stratosphärische Aerosol-Extinktionsprofile, welche von Messinstrumenten wie dem zweiten Stratospheric Aerosol and Gas Experiment (SAGE II), dem SCIAMACHY, dem OSIRIS und dem OMPS bis heute fortgeführt wird. rnrnIn dieser Arbeit wird ein neu entwickelter Algorithmus vorgestellt, der das sogenannte ,,Zwiebel-Schäl Prinzip'' verwendet, um Extinktionsprofile zwischen 12 und 33 km zu berechnen. Dafür wird der Algorithmus auf Radianzprofile einzelner Wellenlängen angewandt, die von SCIAMACHY in der Limb-Geometrie gemessen wurden. SCIAMACHY's einzigartige Methode abwechselnder Limb- und Nadir-Messungen bietet den Vorteil, hochaufgelöste vertikale und horizontale Messungen mit zeitlicher und räumlicher Koinzidenz durchführen zu können. Die dadurch erlangten Zusatzinformationen können verwendet werden, um die Effekte von horizontalen Gradienten entlang der Sichtlinie des Messinstruments zu korrigieren, welche vor allem kurz nach Vulkanausbrüchen und für polare Stratosphärenwolken beobachtet werden. Wenn diese Gradienten für die Berechnung von Extinktionsprofilen nicht beachtet werden, so kann dies dazu führen, dass sowohl die optischen Dicke als auch die Höhe von Vulkanfahnen oder polarer Stratosphärenwolken unterschätzt werden. In dieser Arbeit wird ein Verfahren vorgestellt, welches mit Hilfe von dreidimensionalen Strahlungstransportsimulationen und horizontal aufgelösten Datensätzen die berechneten Extinktionsprofile korrigiert.rnrnVergleichsstudien mit den Ergebnissen von Satelliten- (SAGE II) und Ballonmessungen zeigen, dass Extinktionsprofile von stratosphärischen Partikeln mit Hilfe des neu entwickelten Algorithmus berechnet werden können und gut mit bestehenden Datensätzen übereinstimmen. Untersuchungen des Nabro Vulkanausbruchs 2011 und des Auftretens von polaren Stratosphärenwolken in der südlichen Hemisphäre zeigen, dass das Korrekturverfahren für horizontale Gradienten die berechneten Extinktionsprofile deutlich verbessert.