12 resultados para Functional-cognitive approach
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn
Resumo:
Tethered bilayer lipid membranes (tBLMs) are a promising model system for the natural cell membrane. They consist of a lipid bilayer that is covalently coupled to a solid support via a spacer group. In this study, we developed a suitable approach to increase the submembrane space in tBLMs. The challenge is to create a membrane with a lower lipid density in order to increase the membrane fluidity, but to avoid defects that might appear due to an increase in the lateral space within the tethered monolayers. Therefore, various synthetic strategies and different monolayer preparation techniques were examined. Synthetical attempts to achieve a large ion reservoir were made in two directions: increasing the spacer length of the tether lipids and increasing the lateral distribution of the lipids in the monolayer. The first resulted in the synthesis of a small library of tether lipids (DPTT, DPHT and DPOT) characterized by 1H and 13C NMR, FD-MS, ATR, DSC and TGA. The synthetic strategy for their preparation includes synthesis of precursor with a double bond anchor that can be easily modified for different substrates (e.g. metal and metaloxide). Here, the double bond was modified into a thiol group suitable for gold surface. Another approach towards the preparation of homogeneous monolayers with decreased two-dimensional packing density was the synthesis of two novel anchor lipids: DPHDL and DDPTT. DPHDL is “self-diluted” tether lipid containing two lipoic anchor moieties. DDPTT has an extended lipophylic part that should lead to the preparation of diluted, leakage free proximal layers that will facilitate the completion of the bilayer. Our tool-box of tether lipids was completed with two fluorescent labeled lipid precursors with respectively one and two phytanyl chains in the hydrophobic region and a dansyl group as a fluorophore. The use of such fluorescently marked lipids is supposed to give additional information for the lipid distribution on the air-water interface. The Langmuir film balance was used to investigate the monolayer properties of four of the synthesized thiolated anchor lipids. The packing density and mixing behaviour were examined. The results have shown that mixing anchor with free lipids can homogeneously dilute the anchor lipid monolayers. Moreover, an increase in the hydrophylicity (PEG chain length) of the anchor lipids leads to a higher packing density. A decrease in the temperature results in a similar trend. However, increasing the number of phytanyl chains per lipid molecule is shown to decrease the packing density. LB-monolayers based on pure and mixed lipids in different ratio and transfer pressure were tested to form tBLMs with diluted inner layers. A combination of the LB-monolayer transfer with the solvent exchange method accomplished successfully the formation of tBLMs based on pure DPOT. Some preliminary investigations of the electrical sealing properties and protein incorporation of self-assembled DPOT and DDPTT-based tBLMs were conducted. The bilayer formation performed by solvent exchange resulted in membranes with high resistances and low capacitances. The appearance of space beneath the membrane is clearly visible in the impedance spectra expressed by a second RC element. The latter brings the conclusion that the longer spacer in DPOT and the bigger lateral space between the DDPTT molecules in the investigated systems essentially influence the electrical parameters of the membrane. Finally, we could show the functional incorporation of the small ion carrier valinomycin in both types of membranes.
Resumo:
Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.
Resumo:
Discotic hexa-peri-hexabenzocoronene (HBC) derivatives have attracted intensive scientific interest due to their unique optoelectronic properties, which depends, to a large extend, upon the attached functional groups. The presented work covers the synthesis of novel HBC building blocks and new HBC derivatives as functional materials. The traditional preparation of HBC derivatives requires elaborate synthetic techniques and tremendous effort. Especially, more than 10 synthetic steps are usually necessary to approach HBCs with lower symmetries. In order to simplify the synthetic work and reduce the high costs, a novel synthetic strategy involving only four steps was developed based on 2,3,5,6-tetraphenyl-1,4-diiodobenzene intermediates and palladium catalyzed Suzuki cross coupling reactions. In order to introduce various functionalities and expand the diversity of multi-functionalizations, a novel C2v-symmetric dihalo HBC building block 2-47, which contains one iodine and one bromine in para positions, was prepared following the traditional intermolecular [4+2] Diels-Alder reaction route. The outstanding chemical selectivity between iodo and bromo groups in this compound consequently leads to lots of HBC derivatives bearing different functionalities. Directly attached heteroatoms will improve the material properties. According to the application of intramolecular Scholl reaction to a para-dimethoxy HPB, which leads to a meta-dimethoxy HBC, a phenomenon of phenyl group migration was discovered. Thereby, several interesting mechanistic details involving arenium cation intermediates were discussed. With a series of dipole functionalized HBCs, the molecular dynamics of this kind of materials was studied in different phases by DSC, 2D WAXD, solid state NMR and dielectric spectroscopies. High charge carrier mobility is an important parameter for a semiconductive material and depends on the degree of intramolecular order of the discotic molecules in thin films for HBC derivatives. Dipole – dipole interaction and hydrogen bonds were respectively introduced in order to achieve highly ordered supramolecular structure. The self-assembly behavior of these materials were investigated both in solution and solid state. Depending upon the different functionalities, these novel materials show either gelating or non-linear optical properties, which consequently broaden their applications as functional materials. In the field of conceivable electronic devices at a molecular level, HBCs hold high promise. Differently functionalized HBCs have been used as active component in the studies of single-molecular CFET and metal-SAMs-metal junctions. The outstanding properties shown in these materials promise their exciting potential applications in molecular devices.
Resumo:
Functional materials have great importance due to their many important applications. The characterization of supramolecular architectures which are held together by non-covalent interactions is of most importance to understand their properties. Solid-state NMR methods have recently been proven to be able to unravel such structure-property relations with the help of fast magic-angle spinning and advanced pulse sequences. The aim of the current work is to understand the structure and dynamics of functional supramolecular materials which are potentially important for fuel-cell (proton conducting membrane materials) and solar-cell or plastic-electronic applications (photo-reactive aromatic materials). In particular, hydrogen-bonding networks, local proton mobility, molecular packing arrangements, and local dynamics will be studied by the use of advanced solid-state NMR methods. The first class of materials studied in this work is proton conducting polymers which also form hydrogen-bonding network. Different materials, which are prepared for high 1H conduction by different approaches are studied: PAA-P4VP, PVPA-ABPBI, Tz5Si, and Triazole-functional systems. The materials are examples of the following major groups; - Homopolymers with specific functional groups (Triazole functional polysiloxanes). - Acid-base polymer blends approach (PAA-P4VP, PVPA-ABPBI). - Acid-base copolymer approach (Triazole-PVPA). - Acid doped polymers (Triazole functional polymer doped with H3PO4). Perylenebisimide (PBI) derivatives, a second type of important functional supramolecular materials with potent applications in plastic electronics, were also investigated by means of solid-state NMR. The preparation of conducting nanoscopic fibers based on the self-assembling functional units is an appealing aim as they may be incorporated in molecular electronic devices. In this category, perylene derivatives have attracted great attention due to their high charge carrier mobility. A detailed knowledge about their supramolecular structure and molecular dynamics is crucial for the understanding of their electronic properties. The aim is to understand the structure, dynamics and packing arrangements which lead to high electron conductivity in PBI derivatives.
Resumo:
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.
Resumo:
Polysiloxanes can be synthesized and subsequently modified (i) by the attachment of small molecules that change the properties of the silicone in such a way that it becomes more hydrophilic, but under the premise that this does not go together with a loss of the silicone-specific features. This can be done by adding hydrophilic sidechains to a polysiloxane. Polyethers like poly(ethylene glycol) or hyperbranched polyether-polyols are suitable in this regard. In order to assure that the silicone properties retain, these side groups can be attached to only one part of the polysiloxane backbone, which results in a block copolymer that consists of a common polysiloxane and a second block of the modified structure. (ii) Polysiloxanes can be equipped with functional groups that are capable of initializing polymerization of a different monomer (macroinitiator approach). For example, hydroxyl groups are used to initiate the ring opening polymerization of cyclic esters, or ATRP macroinitiators can be synthesized to add a second block via controlled radical polymerization. Stimuli responsive polymers like poly(oligoethylene glycol methacrylate) (POEGMA) can be added via this route to create “smart” siloxane-containing block copolymers that respond to certain stimuli. rnAn important premise for all synthetic routes is to achieve the targeted structure in a process as simple as possible, because facile availability of the material is crucial with regard to industrial applicability of the invented products. rnConcerning characterization of the synthesized macromolecules, emphasize is put on their (temperature dependent) aggregation behavior, which can be investigated by several microscopic and scattering methods, their behavior at the interface between silicone oils and water and their thermal properties.rnrn
Resumo:
In this thesis, anodic aluminum oxide (AAO) membranes, which provide well-aligned uniform mesoscopic pores with adjustable pore parameters, were fabricated and successfully utilized as templates for the fabrication of functional organic nanowires, nanorods and the respective well-ordered arrays. The template-assisted patterning technique was successfully applied for the realization of different objectives:rnHigh-density and well-ordered arrays of hole-conducting nanorods composed of cross-linked triphenylamine (TPA) and tetraphenylbenzidine (TPD) derivatives on conductive substrates like ITO/glass have been successfully fabricated. By applying a freeze-drying technique to remove the aqueous medium after the wet-chemical etching of the template, aggregation and collapsing of the rods was prevented and macroscopic areas of perfectly freestanding nanorods were feasible. Based on the hole-conducting nanorod arrays and their subsequent embedding into an electron-conducting polymer matrix via spin-coating, a novel routine concept for the fabrication of well-ordered all-organic bulk heterojunction for organic photovoltaic applications was successfully demonstrated. The increased donor/acceptor interface of the fabricated devices resulted in a remarkable increase of the photoluminescence quenching compared to a planar bilayer morphology. Further, the fundamental working principle of the templating approach for the solution-based all-organic photovoltaic device was demonstrated for the first time.rnFurthermore, in order to broaden the applicability of patterned surfaces, which are feasible via the template-based patterning of functional materials, AAO with hierarchically branched pores were fabricated and utilized as templates. By pursuing the common templating process hierarchically polymeric replicas, which show remarkable similarities with interesting biostructures, like the surface of the lotus leaf and the feet of a gecko, were successfully prepared.rnIn contrast to the direct infiltration of organic functional materials, a novel route for the fabrication of functional nanowires via post-modification of reactive nanowires was established. Therefore, reactive nanowires based on cross-linked pentafluorophenylesters were fabricated by utilizing AAO templates. The post-modification with fluorescent dyes was demonstrated. Furthermore, reactive wires were converted into well-dispersed poly(N-isopropylacrylamide) (PNIPAM) hydrogels, which exhibit a thermal-responsive reversible phase transition. The reversible thermal-responsible swelling of the PNIPAM nanowires exhibited a more than 50 % extended length than in the collapsed PNIPAM state. rnLast but not least, the shape-anisotropic pores of AAO were utilized to uniformly align the mesogens of a nematic liquid crystalline elastomer. Liquid crystalline nanowires with a narrow size distribution and uniform orientation of the liquid crystalline material were fabricated. It was shown that during the transition from the nematic to the isotropic phase the rod’s length shortened by roughly 40 percent. As such these liquid crystalline elastomeric nanowires may find application, as wire-shaped nanoactuators in various fields of research, like lab-on-chip systems, micro fluidics and biomimetics.rn
Resumo:
In Rahmen der vorliegenden Arbeit wurde ein neuartiger Zugang zu einer Vielzahl von Polymerstrukturen auf Basis des klinisch zugelassenen Polymers Poly(N-(2-Hydroxypropyl)-methacrylamide) (PHPMA) entwickelt. Der synthetische Zugang beruht zum einen auf der Verwendung von Reaktivesterpolymeren und zum anderen auf der Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerisationsmethode. Diese Form einer kontrollierten radikalischen Polymerisation ermöglichte es, neben der Synthese von besser definierten Homopolymeren auch statistische und Blockcopolymere herzustellen. Die Reaktivesterpolymere können durch einfache Aminolyse in HPMA-basierte Systeme überführt werden. Somit können sie als eine vielversprechende Basis zur Synthese von umfangreichen Polymerbibliotheken angesehen werden. Die hergestellten Polymere kombinieren verschiedene Funktionalitäten bei konstantem Polymerisationsgrad. Dies ermöglicht eine Optimierung auf eine gezielte Anwendung hin ohne den Parameter der Kettenlänge zu verändern.rnIm weiteren war es durch Verwendung der RAFT Polymerisation möglich partiell bioabbaubare Blockcopolymere auf Basis von Polylactiden und HPMA herzustellen, in dem ein Kettentransferreagenz (CTA) an ein wohl definiertes Polylactid Homopolymer gekoppelt wurde. Diese Strukturen wurden in ihrer Zusammensetzung variiert und mit Erkennungsstrukturen (Folaten) und markierenden Elementen (Fluoreszenzfarbstoffe und +-emittierenden Radionukleide) versehen und im weiteren in vitro und in vivo evaluiert.rnAuf Grund dieser Errungenschaften war es möglich den Einfluss der Polymermikrostruktur auf das Aggregationsverhalten hin mittel Lichtstreuung und Fluoreszenzkorrelationsspektroskopie zu untersuchen. Es konnte gezeigt werden, dass erst diese Informationen über die Überstrukturbildung die Kinetik der Zellaufnahme erklären können. Somit wurde die wichtige Rolle von Strukturwirkungsbeziehungen nachgewiesen.rnSomit konnte neben der Synthese, Charakterisierung und ersten biologischen Evaluierungen ein Beitrag zum besseres Verständnis zur Interaktion von polymeren Partikeln mit biologischen Systemen geleistet werden.
Resumo:
Diese Dissertation basiert auf einem theoretischen Artikel und zwei empirischen Studien.rnrnDer theoretische Artikel: Es wird ein theoretisches Rahmenmodell postuliert, welches die Kumulierung von Arbeitsunterbrechung und deren Effekte untersucht. Die meisten bisherigen Studien haben Unterbrechungen als isoliertes Phänomen betrachtet und dabei unberücksichtigt gelassen, dass während eines typischen Arbeitstages mehrere Unterbrechungen gleichzeitig (oder aufeinanderfolgend) auftreten. In der vorliegenden Dissertation wird diese Lücke gefüllt, indem der Prozess der kumulierenden Unterbrechungen untersucht wird. Es wird beschrieben,rninwieweit die Kumulation von Unterbrechungen zu einer neuen Qualität vonrn(negativen) Effekten führt. Das Zusammenspiel und die gegenseitige Verstärkung einzelner Effekte werden dargestellt und moderierende und mediierende Faktoren aufgezeigt. Auf diese Weise ist es möglich, eine Verbindung zwischen kurzfristigen Effekten einzelner Unterbrechungen und Gesundheitsbeeinträchtigungen durch die Arbeitsbedingung ‚Unterbrechungen‘rnherzustellen.rnrnStudie 1: In dieser Studie wurde untersucht, inwieweit Unterbrechungen Leistung und Wohlbefinden einer Person innerhalb eines Arbeitstages beeinflussen. Es wurde postuliert, dass das Auftreten von Unterbrechungen die Zufriedenheit mit der eigenen Leistung vermindert und das Vergessen von Intentionen und das Irritationserleben verstärkt. Geistige Anforderung und Zeitdruck galten hierbei als Mediatoren. Um dies zu testen, wurden 133 Pflegekräften über 5 Tage hinweg mittels Smartphones befragt. Mehrebenenanalysen konnten die Haupteffekte bestätigen. Die vermuteten Mediationseffekte wurden für Irritation und (teilweise) für Zufriedenheit mit der Leistung bestätigt, nicht jedoch für Vergessen von Intentionen. Unterbrechungen führen demzufolge (u.a.) zu negativen Effekten, da sie kognitiv anspruchsvoll sind und Zeit beanspruchen.rnrnStudie 2: In dieser Studie wurden Zusammenhänge zwischen kognitiven Stressorenrn(Arbeitsunterbrechungen und Multitasking) und Beanspruchungsfolgen (Stimmung und Irritation) innerhalb eines Arbeitstages gemessen. Es wurde angenommen, dass diese Zusammenhänge durch chronologisches Alter und Indikatoren funktionalen Alters (Arbeitsgedächtniskapazität und Aufmerksamkeit) moderiert wird. Ältere mit schlechteren Aufmerksamkeitsund Arbeitsgedächtnisleistungen sollten am stärksten durch die untersuchten Stressoren beeinträchtigt werden. Es wurde eine Tagebuchstudie (siehe Studie 1) und computergestützternkognitive Leistungstests durchgeführt. Mehrebenenanalysen konnten die Haupteffekte für die abhängigen Variablen Stimmung (Valenz und Wachheit) und Irritation bestätigen, nicht jedoch für Erregung (Stimmung). Dreifachinteraktionen wurden nicht in der postulierten Richtung gefunden. Jüngere, nicht Ältere profitierten von einem hohen basalen kognitivenrnLeistungsvermögen. Ältere scheinen Copingstrategien zu besitzen, die mögliche kognitive Verluste ausgleichen. rnrnIm Allgemeinen konnten die (getesteten) Annahmen des theoretischen Rahmenmodellsrnbestätigt werden. Prinzipiell scheint es möglich, Ergebnisse der Laborforschung auf die Feldforschung zu übertragen, jedoch ist es notwendig die Besonderheiten des Feldes zu berücksichtigen. Die postulieren Mediationseffekte (Studie 1) wurden (teilweise) bestätigt. Die Ergebnisse weisen jedoch darauf hin, dass der volle Arbeitstag untersucht werden muss und dass sehr spezifische abhängige Variablen auch spezifischere Mediatoren benötigen. Des Weiteren konnte in Studie 2 bestätigt werden, dass die kognitive Kapazität eine bedeutsamernRessource im Umgang mit Unterbrechungen ist, im Arbeitskontext jedoch auch andere Ressourcen wirken.
Poly(lactide): from hyperbranched copolyesters to new block copolymers with functional methacrylates
Resumo:
The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.
Resumo:
Diese Dissertation zeigt zum ersten Mal den Ansatz gesättigte und ungesättigte Poly(Phosphorester) herzustellen, deren Polymergerüst und Seitenketten durch präzises Anbring-en von funktionellen und/oder solubilisierenden Gruppen modifiziert werden können. Durch Kombinieren der Vorteile der Olefinmetathese mit der Vielseitigkeit der Phos-phorchemie, eröffnet dieser variable Ansatz den Zugang zu einer neuen Klasse ungesättigter Poly-phosphate. Die zu Grunde liegende Idee ist das maßgeschneiderte Anpassen der Architektur und der Mikrostruktur dieser Polymere. Lineare, verzweigte, markierte und telechele Poly(Phosphorester) können in großem Maßstab mit hohen Funktionalisierungsgrad hergestellt werden.rnEiner der größten Vorteile dieses Ansatzes ist es, das Polymerrückrat modifizieren zu können, was weder bei der Ringöffnungs- noch bei klassischen Polymerisationen möglich ist, bei denen nur eine limitierte Anzahl an Monomeren existieren.rnDie Eigenschaften des Phosphors werden in neue Polymerarchitekturen übertragen, was von Nutzen für flammenhemmenden Materialen und Anwendung bei Gewebetherapeutika ist. Diese Doktorarbeit führt auch einzigartige Poly(Phosphorester) ein, welche im Feld der Op-toelektronik als Sauerstofffänger eingesetzten werden können. Die beschriebenen Synthese-vorschriften können einfach in größeren Maßstab durchgeführt werden und sind vielversprechend für industrielle Anwendungen, da ungesättigte Polyester einen sehr wichtigen Markt repräsentieren.