21 resultados para Flows on surfaces
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Nature leads, we follow. But nanotechnologists are in hot pursuit, in designing controllable structures that can mimic naturally occurring and artificially synthesized materials on a common platform. The supramolecular chemistry concerns the investigation of nature principles to produce fascinating complexed and functional molecular assemblies, as well as the utilization of these principles to generate novel devices and materials, potentially useful for sensing, catalysis, transport and other applications in medical or engineering science. The work presented in this thesis is a compilation of different synthetic methods to achieve inorganic-organic hybrid nanomaterials. Silicatein, a protein enzyme, which acts both as a catalyst and template for the formation of silica needles in marine sponges, has been used for the biosynthesis of semiconductor metal oxides on surfaces. Silicatein was immobilized on gold (111) surfaces using alkane thiol, as well as on a novel self-assembly of NTA on top of a “cushion” of reactive ester polymer has been successfully employed to make functionalised surfaces. The immobilization of silicatein on surfaces was monitored by surface plasmon spectroscopy, atomic force microscopy and confocal laser scanning microscopy. Surface bound silicatein retains its biocatalytic activity, which was demonstrated by monitoring its hydrocatalytic activity to catalyse the synthesis of biosilica, biotitania, and biozirconia. The synthesis of semiconductor metal oxides was characterized using scanning electron microscopy. This hydrolytic biocatalyst is used to synthesize the gold nanoparticles. The gold nanoparticles are formed by reduction of tetrachloroaurate, AuCl4-, by the action of sulfhydryl groups hidden below the surface groups of the protein. The resulting gold nanoparticles which are stabilized by surface bound silicatein further aggregate to form Au nanocrystals. The shape of the nanocrystals obtained by using recombinant silicatein is controlled through chiral induction by the protein during the nucleation of the nanocrystals. As an extension of this work, TiO2 nanowires were functionalized using polymeric ligand which incorporates the nitrilotriacetic acid (NTA) linker in the back bone to immobilize His-tagged silicatein onto the TiO2 nanowires. The surface bound protein not only retains its original hydrolytic properties, but also acts as a reductant for AuCl4- in the synthesis of hybrid TiO2/silicatein/Au nanocomposites. Functionalized, monocrystalline rutile TiO2 nanorods were prepared from TiCl4 in aqueous solution in the presence of dopamine. The surface bound organic ligand controls the morphology as well as the crystallinity and the phase selection of TiO2. The surface amine groups can be tailored further with functional molecules such as dyes. As an example, this surface functionality is used for the covalent binding of a fluorescent dye,4-chloro-7- nitrobenzylurazene (NBD) to the TiO2 nanorods. The polymeric ligands have been used successfully for the in-situ and post-functionalization of TiO2 nanoparticles. Besides to chelating dopamine anchor group the multifunctional ligand system presented here incorporates a modifier molecule which allows the binding of functional molecules (here the dyes pyrene, NBD, and Texas Red) as well as additional entities which allow tailoring the solubility of inorganic nanocrystals in different solvents. A novel method for the surface functionalization of fullerene-type MoS2 nanoparticles and subsequently binding these nanoparticles onto TiO2 nanowires has been reported using polymeric ligands. The procedure involves the complexation of IF-MoS2 with a combination of Ni2+ via an umbrella-type nitrilotriacetic acid (NTA) and anchoring them to the sidewalls of TiO2 nanowires utilizing the hydroxyl groups of dopamine present in the main contents of polymeric ligand. A convenient method for the synthesis of Au/CdS nanocomposites has been presented, which were achieved through the novel method of thiol functionalization of gold colloids. The thermodynamically most stable phase of ZrO2 (cubic) has been obtained at much lower temperature (180°C). These nanoparticles are highly blue fluorescent, with a high surface area.
Resumo:
During the last years great effort has been devoted to the fabrication of superhydrophobic surfaces because of their self-cleaning properties. A water drop on a superhydrophobic surface rolls off even at inclinations of only a few degrees while taking up contaminants encountered on its way. rnSuperhydrophobic, self-cleaning coatings are desirable for convenient and cost-effective maintenance of a variety of surfaces. Ideally, such coatings should be easy to make and apply, mechanically resistant, and long-term stable. None of the existing methods have yet mastered the challenge of meeting all of these criteria.rnSuperhydrophobicity is associated with surface roughness. The lotus leave, with its dual scale roughness, is one of the most efficient examples of superhydrophobic surface. This thesis work proposes a novel technique to prepare superhydrophobic surfaces that introduces the two length scale roughness by growing silica particles (~100 nm in diameter) onto micrometer-sized polystyrene particles using the well-established Stöber synthesis. Mechanical resistance is conferred to the resulting “raspberries” by the synthesis of a thin silica shell on their surface. Besides of being easy to make and handle, these particles offer the possibility for improving suitability or technical applications: since they disperse in water, multi-layers can be prepared on substrates by simple drop casting even on surfaces with grooves and slots. The solution of the main problem – stabilizing the multilayer – also lies in the design of the particles: the shells – although mechanically stable – are porous enough to allow for leakage of polystyrene from the core. Under tetrahydrofuran vapor polystyrene bridges form between the particles that render the multilayer-film stable. rnMulti-layers are good candidate to design surfaces whose roughness is preserved after scratch. If the top-most layer is removed, the roughness can still be ensured by the underlying layer.rnAfter hydrophobization by chemical vapor deposition (CVD) of a semi-fluorinated silane, the surfaces are superhydrophobic with a tilting angle of a few degrees. rnrnrn
Resumo:
The thesis can be divided in four parts and summarized as follows:(i) The investigation and development of a continuous flow synthesis procedure affording end-functional polymers by anionic polymerization and subsequent termination in one reaction step and on a multigram scale was carried out. Furthermore, the implementation of not only a single hydroxyl but multiple orthogonal functionalities at the chain terminus was achieved by utilizing individually designed, functional epoxide-based end-capping reagents.(ii) In an additional step, the respective polymers were used as macroinitiators to prepare in-chain functionalized block copolymers and star polymers bearing intriguing novel structural and material properties. Thus, the second part of this thesis presents the utilization of end-functional polymers as precursors for the synthesis of amphiphilic complex and in some cases unprecedented macromolecular architectures, such as miktoarm star polymers based on poly(vinyl pyridine), poly(vinyl ferrocene) and PEO.(iii) Based on these structures, the third part of this thesis represents a detailed investigation of the preparation of stimuli-responsive ultrathin polymer films, using amphiphilic junction point-reactive block copolymers. The single functionality at the block interface can be employed as anchor group for the covalent attachment on surfaces. Furthermore, the change of surface properties was studied by applying different external stimuli.(iv) An additional topic related to the oxyanionic polymerizations carried out in the context of this thesis was the investigation of viscoelastic properties of different hyperbranched polyethers, inspired by the recent and intense research activities in the field of biomedical applications of multi-functional hyperbranched materials.
Resumo:
Die dieser Arbeit zugrundeliegenden Nanopartikel wurden mittels der Makromonomer-Strategie aus polymerisierbaren Polystyrol-b-Poly(2-vinylpyridin) Oligomeren dargestellt. Die Bürstenpolymere besitzen eine polare PS-Schale und einen polaren Kern (P2VP), dessen Polarität durch Quaternisierung deutlich erhöht werden kann. Die Bürstenpolymere weisen bei Molmassen um 400 - 800 kg/mol einen Teilchendurchmesser von ca. 15 - 20 nm auf. Die Nanopartikel eignen sich dazu, hydrophile Farbstoffe in unpolaren Lösungsmitteln zu solubilisieren. Durch spektroskopische Untersuchungen wurden in Abhängigkeit der chemischen Struktur und der Bürstenpolymere Beladungsgrade von über 1 g Farbstoff pro Gramm Polymer ermittelt. Die Beladung der Nanopartikel folgt hierbei einer nichttrivialen Kinetik, was möglicherweise durch eine wasserinduzierte Überstrukturbildung während der Beladung bedingt ist. Mittels isothermer Titrationskalorimetrie konnten die Wechselwirkungen zwischen polymeren Substrat und niedermolekularen Liganden genauer charakterisiert werden. Teilweise werden hierbei zweistufige Titrationsverläufe und "überstöchiometrische" Beladung der Bürstenpolymere beobachtet. Den Hauptbeitrag zur Wechselwirkung liefert hierbei die exotherme Wechselwirkung zwischen basischen Polymer und saurem Farbstoff. Die hohe Farbstoffbeladung führt zur deutlichen Vergrößerung der einzelnen Nanopartikel, was sowohl in Lösung durch Lichtstreu-Techniken als auch auf Oberflächen mit Hilfe des AFM zu beobachten ist. Durch Untersuchungen mit der analytischen Ultrazentrifuge konnte nachgewiesen werden, dass sich der eingelagerte Farbstoff in einem Polaritäts-abhängigen Gleichgewicht mit der Umgebung steht, er somit auch wieder aus den Nanopartikeln freigesetzt werden kann. Darüberhinaus wurden im Rahmen der Arbeit erste Erfolge bei der Synthese von wasserlöslichen Nanopartikeln mit Poly(2-vinylpyridin)-Kern erzielt. Als hierfür geeignet stellte sich eine Synthesestrategie heraus, bei der zunächst ein Bürstenpolymer mit P2VP-Seitenketten dargestellt und dieses anschließend mit geeignet funktionalisierten Polyethylenoxid-Ketten zum Kern-Schale Teilchen umgesetzt wurde. Neben Untersuchungen zum Mizellisierungsverhalten von PEO-b-P2VP Makromonomeren wurden deren Aggregate in Wasser hinsichtlich ihrer Zelltoxizität durch in-vitro Experimente an C26-Mäusekarzinom-Zellen charakterisiert. Die extrem geringe Toxizität macht das PEO-P2VP System zu einem potentiellen Kandidaten für drug-delivery Anwendungen. Besonders die pH-abhängige Löslichkeitsänderung des Poly(2-vinylpyridin) erscheint hierbei besonders interessant.
Resumo:
In dieser Arbeit wurde die Elektronenemission von Nanopartikeln auf Oberflächen mittels spektroskopischen Photoelektronenmikroskopie untersucht. Speziell wurden metallische Nanocluster untersucht, als selbstorganisierte Ensembles auf Silizium oder Glassubstraten, sowie ferner ein Metall-Chalcogenid (MoS2) Nanoröhren-Prototyp auf Silizium. Der Hauptteil der Untersuchungen war auf die Wechselwirkung von fs-Laserstrahlung mit den Nanopartikeln konzentriert. Die Energie der Lichtquanten war kleiner als die Austrittsarbeit der untersuchten Proben, so dass Ein-Photonen-Photoemission ausgeschlossen werden konnte. Unsere Untersuchungen zeigten, dass ausgehend von einem kontinuierlichen Metallfilm bis hin zu Clusterfilmen ein anderer Emissionsmechanismus konkurrierend zur Multiphotonen-Photoemission auftritt und für kleine Cluster zu dominieren beginnt. Die Natur dieses neuen Mechanismus` wurde durch verschiedenartige Experimente untersucht. Der Übergang von einem kontinuierlichen zu einem Nanopartikelfilm ist begleitet von einer Zunahme des Emissionsstroms von mehr als eine Größenordnung. Die Photoemissions-Intensität wächst mit abnehmender zeitlicher Breite des Laserpulses, aber diese Abhängigkeit wird weniger steil mit sinkender Partikelgröße. Die experimentellen Resultate wurden durch verschiedene Elektronenemissions-Mechanismen erklärt, z.B. Multiphotonen-Photoemission (nPPE), thermionische Emission und thermisch unterstützte nPPE sowie optische Feldemission. Der erste Mechanismus überwiegt für kontinuierliche Filme und Partikel mit Größen oberhalb von mehreren zehn Nanometern, der zweite und dritte für Filme von Nanopartikeln von einer Größe von wenigen Nanometern. Die mikrospektroskopischen Messungen bestätigten den 2PPE-Emissionsmechanismus von dünnen Silberfilmen bei „blauer“ Laseranregung (hν=375-425nm). Das Einsetzen des Ferminiveaus ist relativ scharf und verschiebt sich um 2hν, wenn die Quantenenergie erhöht wird, wogegen es bei „roter“ Laseranregung (hν=750-850nm) deutlich verbreitert ist. Es zeigte sich, dass mit zunehmender Laserleistung die Ausbeute von niederenergetischen Elektronen schwächer zunimmt als die Ausbeute von höherenergetischen Elektronen nahe der Fermikante in einem Spektrum. Das ist ein klarer Hinweis auf eine Koexistenz verschiedener Emissionsmechanismen in einem Spektrum. Um die Größenabhängigkeit des Emissionsverhaltens theoretisch zu verstehen, wurde ein statistischer Zugang zur Lichtabsorption kleiner Metallpartikel abgeleitet und diskutiert. Die Elektronenemissionseigenschaften bei Laseranregung wurden in zusätzlichen Untersuchungen mit einer anderen Anregungsart verglichen, der Passage eines Tunnelstroms durch einen Metall-Clusterfilm nahe der Perkolationsschwelle. Die elektrischen und Emissionseigenschaften von stromtragenden Silberclusterfilmen, welche in einer schmalen Lücke (5-25 µm Breite) zwischen Silberkontakten auf einem Isolator hergestellt wurden, wurden zum ersten Mal mit einem Emissions-Elektronenmikroskop (EEM) untersucht. Die Elektronenemission beginnt im nicht-Ohmschen Bereich der Leitungsstrom-Spannungskurve des Clusterfilms. Wir untersuchten das Verhalten eines einzigen Emissionszentrums im EEM. Es zeigte sich, dass die Emissionszentren in einem stromleitenden Silberclusterfilm Punktquellen für Elektronen sind, welche hohe Emissions-Stromdichten (mehr als 100 A/cm2) tragen können. Die Breite der Energieverteilung der Elektronen von einem einzelnen Emissionszentrum wurde auf etwa 0.5-0.6 eV abgeschätzt. Als Emissionsmechanismus wird die thermionische Emission von dem „steady-state“ heißen Elektronengas in stromdurchflossenen metallischen Partikeln vorgeschlagen. Größenselektierte, einzelne auf Si-Substraten deponierte MoS2-Nanoröhren wurden mit einer Flugzeit-basierten Zweiphotonen-Photoemissions-Spektromikroskopie untersucht. Die Nanoröhren-Spektren wiesen bei fs-Laser Anregung eine erstaunlich hohe Emissionsintensität auf, deutlich höher als die SiOx Substratoberfläche. Dagegen waren die Röhren unsichtbar bei VUV-Anregung bei hν=21.2 eV. Eine ab-initio-Rechnung für einen MoS2-Slab erklärt die hohe Intensität durch eine hohe Dichte freier intermediärer Zustände beim Zweiphotonen-Übergang bei hν=3.1 eV.
Resumo:
Surface stress changes induced by specific adsorption of molecules were investigated using a micromechanical cantilever sensor (MCS) device. 16 MCS are grouped within four separate wells. Each well can be addressed independently by different liquid enabling functionalization of MCS separately by flowing different solutions through each well and performing sensing and reference experiments simultaneously. In addition, each well contains a fixed reference mirror, which allows measuring the absolute bending of MCS. The effect of the flow rate on the MCS bending change was found to be dependent on the absolute bending value of MCS. In addition, the signal from the reference mirror can be used to follow refractive index changes upon mixing different solutions. Finite element simulation of solution exchange in wells was compared with experiment results. Both revealed that one solution can be exchanged by another one after a total volume of 200 µl has flown through. Using MCS, the adsorption of thiolated deoxyribonucleic acid (DNA) molecules and 6-mercapto-1-hexanol (MCH) on gold surfaces, and the DNA hybridization were performed. The nanomechanical response is in agreement with data reported by Fritz et al.1 Thus, the multiwell device is readily applicable for sensing of multiple chemical and biological recognition events in a single step. In this context controlled release and uptake of drugs are currently widely discussed. As a model system, we have used polystyrene (PS) spheres with diameters in the order of µm. The swelling behavior of individual PS spheres in toluene vapor was studied via mass loading by means of micromechanical cantilever sensors. For 4–8% cross-linked PS a mass increase of 180% in saturated toluene vapor was measured. In addition, the diameter change in saturated toluene vapor was measured and the corresponding volume increase of 200% was calculated. The mass of the swollen PS sphere decreases with increasing exposure time to ultraviolet (UV) light. The swelling response is significantly different between the first and the second exposure to toluene vapor. This is attributed to the formation of a cross-linked shell at the surface of the PS spheres. Shape persistent parts were observed for locally UV irradiated PS spheres. These PS spheres were found to be fluorescent and cracks occur after exposure in toluene liquid. The diffusion time of dye molecules in PS spheres increases with increasing chemical cross-linking density. This concept of locally dissolving non cross-linked PS from the sphere was applied to fabricate donut structures on surfaces. Arrays of PS spheres were fabricated using spin coating. The donut structure was produced simply after liquid solvent rinsing. The complete cross-linking of PS spheres was found after long exposure time to UV. We found that stabilizers play a major role in the formation of the donut nanostructures.
Resumo:
The development and characterization of biomolecule sensor formats based on the optical technique Surface Plasmon Resonance (SPR) Spectroscopy and electrochemical methods were investigated. The study can be divided into two parts of different scope. In the first part new novel detection schemes for labeled targets were developed on the basis of the investigations in Surface-plamon Field Enhanced Spectroscopy (SPFS). The first one is SPR fluorescence imaging formats, Surface-plamon Field Enhanced Fluorescence Microscopy (SPFM). Patterned self assembled monolayers (SAMs) were prepared and used to direct the spatial distribution of biomolecules immobilized on surfaces. Here the patterned monolayers would serve as molecular templates to secure different biomolecules to known locations on a surface. The binding processed of labeled target biomolecules from solution to sensor surface were visually and kinetically recorded by the fluorescence microscope, in which fluorescence was excited by the evanescent field of propagating plasmon surface polaritons. The second format which also originates from SPFS technique, Surface-plamon Field Enhanced Fluorescence Spectrometry (SPFSm), concerns the coupling of a fluorometry to normal SPR setup. A spectrograph mounted in place of photomultiplier or microscope can provide the information of fluorescence spectrum as well as fluorescence intensity. This study also firstly demonstrated the analytical combination of surface plasmon enhanced fluorescence detection with analyte tagged by semiconducting nano- crystals (QDs). Electrochemically addressable fabrication of DNA biosensor arrays in aqueous environment was also developed. An electrochemical method was introduced for the directed in-situ assembly of various specific oligonucleotide catcher probes onto different sensing elements of a multi-electrode array in the aqueous environment of a flow cell. Surface plasmon microscopy (SPM) is utilized for the on-line recording of the various functionalization steps. Hybridization reactions between targets from solution to the different surface-bound complementary probes are monitored by surface-plasmon field-enhanced fluorescence microscopy (SPFM) using targets that are either labeled with organic dyes or with semiconducting quantum dots for color-multiplexing. This study provides a new approach for the fabrication of (small) DNA arrays and the recording and quantitative evaluation of parallel hybridization reactions. In the second part of this work, the ideas of combining the SP optical and electrochemical characterization were extended to tethered bilayer lipid membrane (tBLM) format. Tethered bilayer lipid membranes provide a versatile model platform for the study of many membrane related processes. The thiolipids were firstly self-assembled on ultraflat gold substrates. Fusion of the monolayers with small unilamellar vesicles (SUVs) formed the distal layer and the membranes thus obtained have the sealing properties comparable to those of natural membranes. The fusion could be monitored optically by SPR as an increase in reflectivity (thickness) upon formation of the outer leaflet of the bilayer. With EIS, a drop in capacitance and a steady increase in resistance could be observed leading to a tightly sealing membrane with low leakage currents. The assembly of tBLMs and the subsequent incorporation of membrane proteins were investigated with respect to their potential use as a biosensing system. In the case of valinomycin the potassium transport mediated by the ion carrier could be shown by a decrease in resistance upon increasing potassium concentration. Potential mediation of membrane pores could be shown for the ion channel forming peptide alamethicin (Alm). It was shown that at high positive dc bias (cis negative) Alm channels stay at relatively low conductance levels and show higher permeability to potassium than to tetramethylammonium. The addition of inhibitor amiloride can partially block the Alm channels and results in increase of membrane resistance. tBLMs are robust and versatile model membrane architectures that can mimic certain properties of biological membranes. tBLMs with incorporated lipopolysaccharide (LPS) and lipid A mimicking bacteria membranes were used to probe the interactions of antibodies against LPS and to investigate the binding and incorporation of the small antimicrobial peptide V4. The influence of membrane composition and charge on the behavior of V4 was also probed. This study displays the possibility of using tBLM platform to record and valuate the efficiency or potency of numerous synthesized antimicrobial peptides as potential drug candidates.
Resumo:
Membranen spielen eine essentielle Rolle bei vielen wichtigen zellulären Prozessen. Sie ermöglichen die Erzeugung von chemischen Gradienten zwischen dem Zellinneren und der Umgebung. Die Zellmembran übernimmt wesentliche Aufgaben bei der intra- und extrazellulären Signalweiterleitung und der Adhäsion an Oberflächen. Durch Prozesse wie Endozytose und Exozytose werden Stoffe in oder aus der Zelle transportiert, eingehüllt in Vesikel, welche aus der Zellmembran geformt werden. Zusätzlich bietet sie auch Schutz für das Zellinnere. Der Hauptbestandteil einer Zellmembran ist die Lipiddoppelschicht, eine zweidimensionale fluide Matrix mit einer heterogenen Zusammensetzung aus unterschiedlichen Lipiden. In dieser Matrix befinden sich weitere Bausteine, wie z.B. Proteine. An der Innenseite der Zelle ist die Membran über Ankerproteine an das Zytoskelett gekoppelt. Dieses Polymernetzwerk erhöht unter anderem die Stabilität, beeinflusst die Form der Zelle und übernimmt Funktionenrnbei der Zellbewegung. Zellmembranen sind keine homogenen Strukturen, je nach Funktion sind unterschiedliche Lipide und Proteine in mikrsokopischen Domänen angereichert.Um die grundlegenden mechanischen Eigenschaften der Zellmembran zu verstehen wurde im Rahmen dieser Arbeit das Modellsystem der porenüberspannenden Membranen verwendet.Die Entwicklung der porenüberspannenden Membranen ermöglicht die Untersuchung von mechanischen Eigenschaften von Membranen im mikro- bis nanoskopischen Bereich mit rasterkraftmikroskopischen Methoden. Hierbei bestimmen Porosität und Porengröße des Substrates die räumliche Auflösung, mit welcher die mechanischen Parameter untersucht werdenrnkönnen. Porenüberspannende Lipiddoppelschichten und Zellmembranen auf neuartigen porösen Siliziumsubstraten mit Porenradien von 225 nm bis 600 nm und Porositäten bis zu 30% wurden untersucht. Es wird ein Weg zu einer umfassenden theoretischen Modellierung der lokalen Indentationsexperimente und der Bestimmung der dominierenden energetischen Beiträge in der Mechanik von porenüberspannenden Membranen aufgezeigt. Porenüberspannende Membranen zeigen eine linear ansteigende Kraft mit zunehmender Indentationstiefe. Durch Untersuchung verschiedener Oberflächen, Porengrößen und Membranen unterschiedlicher Zusammensetzung war es für freistehende Lipiddoppelschichten möglich, den Einfluss der Oberflächeneigenschaften und Geometrie des Substrates, sowie der Membranphase und des Lösungsmittels auf die mechanischen Eigenschaften zu bestimmen. Es ist möglich, die experimentellen Daten mit einem theoretischen Modell zu beschreiben. Hierbei werden Parameter wie die laterale Spannung und das Biegemodul der Membran bestimmt. In Abhängigkeit der Substrateigenschaften wurden für freitragende Lipiddoppelschichten laterale Spannungen von 150 μN/m bis zu 31 mN/m gefunden für Biegemodulde zwischen 10^(−19) J bis 10^(−18) J. Durch Kraft-Indentations-Experimente an porenüberspannenden Zellmembranen wurde ein Vergleich zwischen dem Modell der freistehenden Lipiddoppelschichten und nativen Membranen herbeigeführt. Die lateralen Spannungen für native freitragende Membranen wurden zu 50 μN/m bestimmt. Weiterhin konnte der Einfluss des Zytoskeletts und der extrazellulä-rnren Matrix auf die mechanischen Eigenschaften bestimmt und innerhalb eines basolateralen Zellmembranfragments kartiert werden, wobei die Periodizität und der Porendurchmesser des Substrates das räumliche Auflösungsvermögen bestimmen. Durch Fixierung der freistehenden Zellmembran wurde das Biegemodul der Membran um bis zu einem Faktor 10 erhöht. Diese Arbeit zeigt wie lokal aufgelöste, mechanische Eigenschaften mittels des Modellsystems der porenüberspannenden Membranen gemessen und quantifiziert werden können. Weiterhin werden die dominierenden energetischen Einflüsse diskutiert, und eine Vergleichbarkeit zurnnatürlichen Membranen hergestellt.rn
Resumo:
Advanced optical biosensor platforms exploiting long range surface plasmons (LRSPs) and responsive N-isopropylacrylamide (NIPAAm) hydrogel binding matrix for the detection of protein and bacterial pathogen analytes were carried out. LRSPs are optical waves that originate from coupling of surface plasmons on the opposite sites of a thin metallic film embedded between two dielectrics with similar refractive indices. LRSPs exhibit orders of magnitude lower damping and more extended profile of field compared to regular surface plasmons (SPs). Their excitation is accompanied with narrow resonance and provides stronger enhancement of electromagnetic field intensity that can advance the sensitivity of surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensors. Firstly, we investigated thin gold layers deposited on fluoropolymer surface for the excitation of LRSPs. The study indicates that the morphological, optical and electrical properties of gold film can be changed by the surface energy of fluoropolymer and affect the performance of a SPFS biosensor. A photo-crosslinkable NIPAAm hydrogel was grafted to the sensor surface in order to serve as a binding matrix. It was modified with bio-recognition elements (BREs) via amine coupling chemistry and offered the advantage of large binding capacity, stimuli responsive properties and good biocompatibility. Through experimental observations supported by numerical simulations describing diffusion mass transfer and affinity binding of target molecules in the hydrogel, the hydrogel binding matrix thickness, concentration of BREs and the profile of the probing evanescent field was optimized. Hydrogel with a up to micrometer thickness was shown to support additional hydrogel optical waveguide (HOW) mode which was employed for probing affinity binding events in the gel by means of refractometric and fluorescence measurements. These schemes allow to reach limits of detection (LODs) at picomolar and femtomolar levels, respectively. Besides hydrogel based experiments for detection of molecular analytes, long range surface plasmon-enhanced fluorescence spectroscopy (LRSP-FS) was employed for detection of bacterial pathogens. The influence of capture efficiency of bacteria on surfaces and the profile of the probing field on sensor response were investigated. The potential of LRSP-FS with extended evanescent field is demonstrated for detection of pathogenic E. coli O157:H7 on sandwich immunoassays . LOD as low as 6 cfu mL-1 with a detection time of 40 minutes was achieved.rn
Resumo:
Rupture forces of ligand-receptor interactions, such as proteins-proteins, proteins-cells, and cells-tissues, have been successfully measured by atomic force spectroscopy (AFS). For these measurements, the ligands and receptors were chemically modified so that they can be immobilized on the tip and on a substrate, respectively. The ligand interact the receptor when the tip approaches the substrate. This interaction can be studied by measuring rupture force upon retraction. However, this technique is not feasible for measurements involving small molecules, since they form only few H-bonds with their corresponding receptors. Modifying small molecules for immobilization on surfaces may block or change binding sites. Thus, recorded rupture forces might not reflect the full scope of the involved small ligand-receptor interactions.rnIn my thesis, a novel concept that allows measuring the rupture force of small involved ligand-receptor interactions and does not require molecular modification for immobilization was introduced. The rupture force of small ligand-receptor interaction is not directly measured but it can be determined from measurements in the presence and in the absence of the ligand. As a model system, the adenosine mono phosphate (AMP) and the aptamer that binds AMP were selected. The aptamer (receptor) is a single stranded DNA that can partially self-hybridize and form binding pockets for AMP molecules (ligands). The bonds between AMP and aptamer are provided by several H-bonds and pair stacking.rnIn the novel concept, the aptamer was split into two parts (oligo a and oligo b). One part was immobilized on the tip and the other one on the substrate. Approaching the tip to the substrate, oligo a and oligo b partially hybridized and the binding pockets were formed. After adding AMP into the buffer solution, the AMP bound in the pockets and additional H-bonds were formed. Upon retraction of the tip, the rupture force of the AMP-split aptamer complex was measured. In the presence of excess AMP, the rupture force increased by about 10 pN. rnThe dissociation constant of the AMP-split aptamer complex was measured on a single molecular level (~ 4 µM) by varying the AMP concentrations and measuring the rupture force at each concentration. Furthermore, the rupture force was amplified when more pockets were added to the split aptamer. rnIn the absence of AMP, the thermal off-rate was slightly reduced compared to that in the presence of AMP, indicating that the AMP stabilized the aptamer. The rupture forces at different loading rates did not follow the logarithmic fit which was usually used to describe the dependence of rupture forces at different loading rates of oligonucleotides. Two distinguished regimes at low and high loading rates were obtained. The two regimes were explained by a model in which the oligos located at the pockets were stretched at high loading rates. rnThe contribution of a single H-bond formed between the AMP molecule and the split aptamer was measured by reducing the binding groups of the AMP. The rupture forces reduce corresponding to the reduction of the binding groups. The phosphate group played the most important role in the formation of H-bond network between the AMP molecule and the split aptamer. rn
Resumo:
This thesis describes the investigation of systematically varied organic molecules for use in molecular self-assembly processes. All experiments were performed using high-resolution non-contact atomic force microscopy under UHV conditions and at room temperature. Using this technique, three different approaches for influencing intermolecular and molecule-surface interaction on the insulating calcite(10.4) surface were investigated by imaging the structure formation at the molecular scale. I first demonstrated the functionalization of shape-persistent oligo(p-benzamide)s that was engineered by introducing different functional groups and investigating their effect on the structural formation on the sample surface. The molecular core was designed to provide significant electrostatic anchoring towards the surface, while at the same time maintaining the flexibility to fine-tune the resulting structure by adjusting the intermolecular cohesion energy. The success of this strategy is based on a clear separation of the molecule-substrate interaction from the molecule-molecule interaction. My results show that sufficient molecule-surface anchoring can be achieved without restricting the structural flexibility that is needed for the design of complex molecular systems. Three derivatives of terephthalic acid (TPA) were investigated in chapter 7. Here, the focus was on changing the adhesion to the calcite surface by introducing different anchor functionalities to the TPA backbone. For all observed molecules, the strong substrate templating effect results in molecular structures that are strictly oriented along the calcite main crystal directions. This templating is especially pronounced in the case of 2-ATPA where chain formation on the calcite surface is observed in contrast to the formation of molecular layers in the bulk. At the same time, the amino group of 2-ATPA proved an efficient anchor functionality, successfully stabilizing the molecular chains on the sample surface. These findings emphasizes, once again, the importance of balancing and fine-tuning molecule-molecule and molecule-surface interactions in order to achieve stable, yet structurally flexible molecular arrangements on the sample surface. In the last chapter, I showed how the intrinsic property of molecular chirality decisively influences the structure formation in molecular self-assembly. This effect is especially pronounced in the case of the chiral heptahelicene-2-carboxylic acid. Deposition of the enantiopure molecules results in the formation of homochiral islands on the sample surface which is in sharp contrast to the formation of uni-directional double rows upon deposition of the racemate onto the same surface. While it remained uncertain from these previous experiments whether the double rows are composed of hetero- or homochiral molecules, I could clearly answer that question here and demonstrate that the rows are of heterochiral origin. Chirality, thus, proves to be another important parameter to steer the intermolecular interaction on surfaces. Altogether, the results of this thesis demonstrate that, in order to successfully control the structure formation in molecular self-assembly, the correct combination of molecule and surface properties is crucial. This is of special importance when working on substrates that exhibit a strong influence on the structure formation, such as the calcite(10.4) surface. Through the systematic variation of functional groups several important parameters that influence the balance between molecule-surface and molecule-molecule interaction were identified here, and the results of this thesis can, thus, act as a guideline for the rational design of molecules for use in molecular self-assembly.
Resumo:
Die salpetrige Säure (HONO) ist eine der reaktiven Stickstoffkomponenten der Atmosphäre und Pedosphäre. Die genauen Bildungswege von HONO, sowie der gegenseitige Austausch von HONO zwischen Atmosphäre und Pedosphäre sind noch nicht vollständig aufgedeckt. Bei der HONO-Photolyse entsteht das Hydroxylradikal (OH) und Stickstoffmonooxid (NO), was die Bedeutsamkeit von HONO für die atmosphärische Photochemie widerspiegelt.rnUm die genannte Bildung von HONO im Boden und dessen anschließenden Austausch mit der Atmosphäre zu untersuchen, wurden Messungen von Bodenproben mit dynamischen Kammern durchgeführt. Im Labor gemessene Emissionsflüsse von Wasser, NO und HONO zeigen, dass die Emission von HONO in vergleichbarem Umfang und im gleichen Bodenfeuchtebereich wie die für NO (von 6.5 bis 56.0 % WHC) stattfindet. Die Höhe der HONO-Emissionsflüsse bei neutralen bis basischen pH-Werten und die Aktivierungsenergie der HONO-Emissionsflüsse führen zu der Annahme, dass die mikrobielle Nitrifikation die Hauptquelle für die HONO-Emission darstellt. Inhibierungsexperimente mit einer Bodenprobe und die Messung einer Reinkultur von Nitrosomonas europaea bestärkten diese Theorie. Als Schlussfolgerung wurde das konzeptionelle Model der Bodenemission verschiedener Stickstoffkomponenten in Abhängigkeit von dem Wasserhaushalt des Bodens für HONO erweitert.rnIn einem weiteren Versuch wurde zum Spülen der dynamischen Kammer Luft mit erhöhtem Mischungsverhältnis von HONO verwendet. Die Messung einer hervorragend charakterisierten Bodenprobe zeigte bidirektionale Flüsse von HONO. Somit können Böden nicht nur als HONO-Quelle, sondern auch je nach Bedingungen als effektive Senke dienen. rnAußerdem konnte gezeigt werden, dass das Verhältnis von HONO- zu NO-Emissionen mit dem pH-Wert des Bodens korreliert. Grund könnte die erhöhte Reaktivität von HONO bei niedrigem pH-Wert und die längere Aufenthaltsdauer von HONO verursacht durch reduzierte Gasdiffusion im Bodenporenraum sein, da ein niedriger pH-Wert mit erhöhter Bodenfeuchte am Maximum der Emission einhergeht. Es konnte gezeigt werden, dass die effektive Diffusion von Gasen im Bodenporenraum und die effektive Diffusion von Ionen in der Bodenlösung die HONO-Produktion und den Austausch von HONO mit der Atmosphäre begrenzen. rnErgänzend zu den Messungen im Labor wurde HONO während der Messkampagne HUMPPA-COPEC 2010 im borealen Nadelwald simultan in der Höhe von 1 m über dem Boden und 2 bis 3 m über dem Blätterdach gemessen. Die Budgetberechnungen für HONO zeigen, dass für HONO sämtliche bekannte Quellen und Senken in Bezug auf die übermächtige HONO-Photolyserate tagsüber vernachlässigbar sind (< 20%). Weder Bodenemissionen von HONO, noch die Photolyse von an Oberflächen adsorbierter Salpetersäure können die fehlende Quelle erklären. Die lichtinduzierte Reduktion von Stickstoffdioxid (NO2) an Oberflächen konnte nicht ausgeschlossen werden. Es zeigte sich jedoch, dass die fehlende Quelle stärker mit der HONO-Photolyserate korreliert als mit der entsprechenden Photolysefrequenz, die proportional zur Photolysefrequenz von NO2 ist. Somit lässt sich schlussfolgern, dass entweder die Photolyserate von HONO überschätzt wird oder dass immer noch eine unbekannte, HONO-Quelle existiert, die mit der Photolyserate sehr stark korreliert. rn rn
Resumo:
This thesis reports on the experimental realization of nanofiber-based spectroscopy of organic molecules. The light guided by subwavelength diameter optical nanfibers exhibits a pronounced evanescent field surrounding the fiber which yields high excitation and emission collection efficiencies for molecules on or near the fiber surface.rnThe optical nanofibers used for the experiments presented in this thesis are realized as thernsub-wavelength diameter waist of a tapered optical fiber (TOF). The efficient transfer of thernlight from the nanofiber waist to the unprocessed part of the TOF depends critically on therngeometric shape of the TOF transitions which represent a nonuniformity of the TOF. Thisrnnonuniformity can cause losses due to coupling of the fundamental guided mode to otherrnmodes which are not guided by the taper over its whole length. In order to quantify the lossrnfrom the fundamental mode due to tapering, I have solved the coupled local mode equationsrnin the approximation of weak guidance for the three layer system consisting of fiber core andrncladding as well as the surrounding vacuum or air, assuming the taper shape of the TOFsrnused for the experiments presented in this thesis. Moreover, I have empirically studied therninfluence of the TOF geometry on its transmission spectra and, based on the results, I haverndesigned a nanofiber-waist TOF with broadband transmission for experiments with organicrnmolecules.rnAs an experimental demonstration of the high sensitivity of nanofiber-based surface spectroscopy, I have performed various absorption and fluorescence spectroscopy measurements on the model system 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). The measured homogeneous and inhomogeneous broadening of the spectra due to the interaction of the dielectric surface of the nanofiber with the surface-adsorbed molecules agrees well with the values theoretically expected and typical for molecules on surfaces. Furthermore, the self-absorption effects due to reasorption of the emitted fluorescence light by circumjacent surface-adsorbed molecules distributed along the fiber waist have been analyzed and quantified. With time-resolved measurements, the reorganization of PTCDA molecules to crystalline films and excimers can be observed and shown to be strongly catalyzed by the presence of water on the nanofiber surface. Moreover, the formation of charge-transfer complexes due to the interaction with localized surface defects has been studied. The collection efficiency of the molecular emission by the guided fiber mode has been determined by interlaced measurements of absorption and fluorescence spectra to be about 10% in one direction of the fiber.rnThe high emission collection efficiency makes optical nanofibers a well-suited tool for experiments with dye molecules embedded in small organic crystals. As a first experimental realization of this approach, terrylene-doped para-terphenyl crystals attached to the nanofiber-waist of a TOF have been studied at cryogenic temperatures via fluorescence and fluorescence excitation spectroscopy. The statistical fine structure of the fluorescence excitation spectrum for a specific sample has been observed and used to give an estimate of down to 9 molecules with center frequencies within one homogeneous width of the laser wavelength on average for large detunings from resonance. The homogeneous linewidth of the transition could be estimated to be about 190MHz at 4.5K.
Resumo:
Die vorliegende Arbeit wurde im Rahmen des Verbundprojektes „Rückhaltung endlagerrelevanter Radionuklide im natürlichen Tongestein und salinaren Systemen“ (Förderkennzeichen: 02E10981), welches durch das Bundesministerium für Wirtschaft und Energie (BMWi) gefördert wurde, angefertigt. Ziel war es, erstmals Erkenntnisse zur Wechselwirkung zwischen dem Spaltprodukt Technetium und einem natürlichen Tongestein im Hinblick auf ein Endlager für wärmeentwickelnde radioaktive Abfälle zu erlangen. Hierfür wurde der in der Nordschweiz vorkommende Opalinuston aus Mont Terri als Referenzmaterial verwendet. Das Nuklid Technetium-99 liefert auf Grund seiner langen Halbwertszeit einen signifikanten Beitrag zur Radiotoxizität abgebrannter Brennelemente für mehr als tausend Jahre. Im Falle einer Freisetzung aus den Lagerbehältern wird die Geochemie des Technetiums von seiner Oxidationsstufe bestimmt, wobei lediglich die Oxidationsstufen +IV und +VII von Relevanz sind. Auf Grund seiner hohen Löslichkeit und geringen Affinität zur Sorption an Oberflächen von Mineralien ist Tc(VII) die mobilste und somit auch gefährlichste Spezies. Entsprechend lag der Fokus dieser Arbeit auf Diffusionsexperimenten dieser mobilen Spezies sowie auf dem Einfluss von Eisen(II) auf die Mobilität und die Speziation des Technetiums.rnDie Wechselwirkung zwischen Technetium und Opalinuston wurde in Sorptions- und Diffusionsexperimenten unter Variation verschiedener Parameter (pH-Wert, Zusatz verschiedener Reduktionsmittel, Einfluss von Sauerstoff, Diffusionsweg) untersucht. Im Zuge dieser Arbeit wurden erstmals ortsaufgelöste Untersuchungen zur Speziation des Technetiums an Dünnschliffen und Bohrkernen durchgeführt. Dabei konnten ergänzend zur Speziation auch Informationen über die Elementverteilung und die kristallinen Mineralphasen nahe lokaler Anreicherungen des Radionuklides gewonnen werden. Zusätzlich erlaubten Untersuchungen an Pulverproben die Bestimmung der molekularen Struktur des Technetiums an der Tonoberfläche.rnSowohl die Kombination der oben aufgeführten Sorptionsexperimente mit spektroskopischen Untersuchungen als auch die Diffusionsexperimente zeigten unter Sauerstoffausschluss eine Reduktion von Tc(VII) zu immobilen Tc(IV)-Spezies. Weiterhin konnte die Bildung eines Tc(IV)-Sorptionskomplexes an der Tonoberfläche gezeigt werden. Im Hinblick auf ein Endlager in Tongestein sind diese Ergebnisse positiv zu bewerten.
Resumo:
Ziel dieser Arbeit war es, ein System zu entwickeln, in dem ein durch Licht induzierter Elektronentransfer stattfinden kann. Dazu wurden ein Kupfer(II)- und ein Zink(II)Tetraazaporphyrin mit acht 4-tert-Butylphenyl-Substituenten synthetisiert (Cu4Dinit, Zn4Dinit). Die Energielücke von 1,85 eV zwischen HOMO und LUMO von Cu4Dinit in Lösung wurde mit Hilfe von Cyclovoltammetrie und UV/Vis-Messungen bestimmt. Somit ist sie größer als für Cu4Dinit Moleküle, die auf einer Oberfläche (Wolfram(100)) liegen und mit STM-, STS-Messungen untersucht wurden. Hier beträgt die Energielücke 1,35 eV, was durch eine Drehung der Phenylringe in die Ebene der Pyrrolringe des Makrozyklus und somit durch eine bessere Überlappung der Orbitale erklärt werden kann. Um die Wechselwirkung der Moleküle mit der Oberfläche zu untersuchen, wurde Cu4Dinit, wie oben beschrieben, auf Magnetit aufgedampft. Dadurch wurde ausschließlich die Wechselwirkung zwischen den Elektronenspins des Kupfer(II)-ions und den Elektronenspins des Eisens im Magnetit betrachtet. Durch Messungen der Röntgenabsorption und des XMCD-Effektes konnten das Spinmoment, Bahnmoment und das Gesamtmoment des Kupfers berechnet und eine anisotrope Kopplung des Elektronenspins des Kupferions zum Magnetit, in Abhängigkeit der Magnetisierungsrichtung des Magnetits, festgestellt werden. Wenn der Magnetit senkrecht zur Oberfläche (out-of-plane) magnetisiert ist, ist die Kopplung ferromagnetisch, während bei einer Magnetisierungsrichtung parallel zur Ebene (in-plane) des Magnetits der Elektronenspin des Kupfers antiferromagnetisch mit dem des Eisens koppelt. Dadurch muss der Hamiltonian, der die Wechselwirkung zwischen zwei Spins beschreibt, bei einer anisotropen Kopplung um einen ansiotropen Term ergänzt werden. Das Ergebnis, dass der Elektronenspin des Kupferions durch die Richtung der Magnetisierung des Magnetits beeinflusst werden kann, eröffnet neue Wege, um die Spinkonfiguration von auf der Oberfläche liegenden Molekülen mit ungepaarten Elektronen, wie die zentralen Metallionen der Makrozyklen aber auch die Elektronenspins anderer metallorganischer Komplexe oder molekulare Magnete, durch ein externes Magnetfeld zu beeinflussen. rnDurch die stöchiometrische Templatreaktion von Pyrazino[2,3-f][1,10]-phenanthrolin-2,3-di-carbonitril (Dicnq), Bis(4-tert-Butylphenyl)-fumarodinitril (Dinit) und Kupfer(II)-acetat wurde eine Koordinationsmöglichkeit für ein Ruthenium(II)-ion in einem Tetraazaporphyrin hergestellt und so die Makrozyklen Cu3Dinit1Dicnq und Zn3Dinit1Dicnq synthetisiert, mit Rutheniumionen versetzt und ebenfalls mit Hilfe von Röntgenabsorptionsmessungen und XMCD untersucht. Durch die Vergleiche mit Zn3Dinit1Dicnq und den jeweiligen Verbindungen mit koordinierten Rutheniumionen (Cu3Dinit1Dicnq-1Ru, Zn3Dinit1Dicnq-1Ru) konnte gezeigt werden, dass eine Verschiebung der Elektronendichte des Rutheniumions zu dem zentralen Kupferion des Makrozyklus stattgefunden hat und durch die Koordination eines Rutheniumions in der Peripherie des Tetraazaporphyrins die energetische Lage der Kupferorbitale beeinflusst wird.rnDer Einfluss von vier koordinierten Ruthenium(II)-ionen auf das zentrale Kupferion wurde an Hand des in dieser Arbeit hergestellten Kupfer(II)phenanthralocyanins (Cu4Dicnq) untersucht, das aus vier Dicnq-Liganden und Kupfer(II)-acetat synthetisiert wurde. Auf Grund der schlechten Löslichkeit wurde für die Koordination der Rutheniumionen der Prekursor [Ru(bipy)2Dicnq](PF6)2 hergestellt und daraus der Makrozyklus in einer Templatsynthese mit Kufper(II)-ionen gebildet. Durch diese neue Syntheseroute war es möglich, die Verbindung Cu4Dicnq-4Ru herzustellen und ebenfalls durch Röntgenabsorption und XMCD zu untersuchen und so das Spin- und Bahnmoment zu ermitteln. Ein Teil der Elektronendichte des Rutheniumions in dieser Verbindung wird auf die zusätzlich an das Rutheniumion koordinierten 2,2'-Bipyridine und nicht auf den Makrozyklus, wie in Cu3Dinit1Dicnq-1Ru, geschoben. Trotzdem konnte die Funktionsweise als Modell des Photosystems II durch eine Oxidation durch die Bestrahlung mit einer Quecksilberlampe mit para-Benzochinon beobachtet werden. Dies bestätigte die Funktionsweise des Kupfer(II)phenanthralocyanins mit koordinierten Rutheniumionen, da ein durch Licht induzierter Elektronenübergang auf das para-Benzochinon stattgefunden hat.rn