7 resultados para Finite difference modelling
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In dieser Arbeit wird ein neuer Dynamikkern entwickelt und in das bestehendernnumerische Wettervorhersagesystem COSMO integriert. Für die räumlichernDiskretisierung werden diskontinuierliche Galerkin-Verfahren (DG-Verfahren)rnverwendet, für die zeitliche Runge-Kutta-Verfahren. Hierdurch ist ein Verfahrenrnhoher Ordnung einfach zu realisieren und es sind lokale Erhaltungseigenschaftenrnder prognostischen Variablen gegeben. Der hier entwickelte Dynamikkern verwendetrngeländefolgende Koordinaten in Erhaltungsform für die Orographiemodellierung undrnkoppelt das DG-Verfahren mit einem Kessler-Schema für warmen Niederschlag. Dabeirnwird die Fallgeschwindigkeit des Regens, nicht wie üblich implizit imrnKessler-Schema diskretisiert, sondern explizit im Dynamikkern. Hierdurch sindrndie Zeitschritte der Parametrisierung für die Phasenumwandlung des Wassers undrnfür die Dynamik vollständig entkoppelt, wodurch auch sehr große Zeitschritte fürrndie Parametrisierung verwendet werden können. Die Kopplung ist sowohl fürrnOperatoraufteilung, als auch für Prozessaufteilung realisiert.rnrnAnhand idealisierter Testfälle werden die Konvergenz und die globalenrnErhaltungseigenschaften des neu entwickelten Dynamikkerns validiert. Die Massernwird bis auf Maschinengenauigkeit global erhalten. Mittels Bergüberströmungenrnwird die Orographiemodellierung validiert. Die verwendete Kombination ausrnDG-Verfahren und geländefolgenden Koordinaten ermöglicht die Behandlung vonrnsteileren Bergen, als dies mit dem auf Finite-Differenzenverfahren-basierendenrnDynamikkern von COSMO möglich ist. Es wird gezeigt, wann die vollernTensorproduktbasis und wann die Minimalbasis vorteilhaft ist. Die Größe desrnEinflusses auf das Simulationsergebnis der Verfahrensordnung, desrnParametrisierungszeitschritts und der Aufteilungsstrategie wirdrnuntersucht. Zuletzt wird gezeigt dass bei gleichem Zeitschritt die DG-Verfahrenrnaufgrund der besseren Skalierbarkeit in der Laufzeit konkurrenzfähig zurnFinite-Differenzenverfahren sind.
Resumo:
Numerical simulation of the Oldroyd-B type viscoelastic fluids is a very challenging problem. rnThe well-known High Weissenberg Number Problem" has haunted the mathematicians, computer scientists, and rnengineers for more than 40 years. rnWhen the Weissenberg number, which represents the ratio of elasticity to viscosity, rnexceeds some limits, simulations done by standard methods break down exponentially fast in time. rnHowever, some approaches, such as the logarithm transformation technique can significantly improve rnthe limits of the Weissenberg number until which the simulations stay stable. rnrnWe should point out that the global existence of weak solutions for the Oldroyd-B model is still open. rnLet us note that in the evolution equation of the elastic stress tensor the terms describing diffusive rneffects are typically neglected in the modelling due to their smallness. However, when keeping rnthese diffusive terms in the constitutive law the global existence of weak solutions in two-space dimension rncan been shown. rnrnThis main part of the thesis is devoted to the stability study of the Oldroyd-B viscoelastic model. rnFirstly, we show that the free energy of the diffusive Oldroyd-B model as well as its rnlogarithm transformation are dissipative in time. rnFurther, we have developed free energy dissipative schemes based on the characteristic finite element and finite difference framework. rnIn addition, the global linear stability analysis of the diffusive Oldroyd-B model has also be discussed. rnThe next part of the thesis deals with the error estimates of the combined finite element rnand finite volume discretization of a special Oldroyd-B model which covers the limiting rncase of Weissenberg number going to infinity. Theoretical results are confirmed by a series of numerical rnexperiments, which are presented in the thesis, too.
Resumo:
Mögliche Verformungsmechanismen, die zu den verschiedenen Glimmer- und Mineralfischen führen, sind: intrakristalline Verformung, Kristallrotation, Biegung und Faltung, Drucklösung in Kombination mit Ausfällung und dynamische Rekristallisation oder Mechanismen, die ein großes Mineral in mehrere kleine, fischförmige Kristalle aufspalten.Experimente mit ein neues Verformungsgerät und Objekten in zwei verschiedenen Matrixmaterialien werden beschrieben. Das eine ist PDMS, (Newtonianisch viskoses Polymer), und das andere Tapioca Perlen (Mohr-Couloumb Verhalten). Die Rotation von fischförmigen Objekten in PDMS stimmt mit der theoretischen Rotationsrate für ellipsenförmige Objekte in einem Newtonianischen Material überein. In einer Matrix von Tapioca Perlen nehmen die Objekte eine stabile Lage ein. Diese Orientierung ist vergleichbar mit der von Glimmerfischen. Die Verformung in der Matrix von Tapioca Perlen ist konzentriert auf dünne Scherzonen. Diese Ergebnisse implizieren, daß die Verformung in natürlichen Gesteinen auch in dünnen Scherzonen konzentriert ist.Computersimulationen werden beschrieben, mit denen der Einfluß der Eigenschaften einer Matrix auf die Rotation von Objekten und Verteilung von Deformation untersucht wird.Mit diesen Experimenten wird gezeigt, daß die Orientierung von Glimmerfischen nicht mit Verformung in einem nicht-linearen viskosen Material erklärt werden kann. Eine solche nicht-lineare Rheologie wird im Allgemeinen für die Erdkurste angenommen. Die stabile Orientierung eines Objektes kann mit weicheren Lagen in der Matrix erklärt werden.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories.
Resumo:
In dieser Arbeit werden Quantum-Hydrodynamische (QHD) Modelle betrachtet, die ihren Einsatz besonders in der Modellierung von Halbleiterbauteilen finden. Das QHD Modell besteht aus den Erhaltungsgleichungen für die Teilchendichte, das Momentum und die Energiedichte, inklusive der Quanten-Korrekturen durch das Bohmsche Potential. Zu Beginn wird eine Übersicht über die bekannten Ergebnisse der QHD Modelle unter Vernachlässigung von Kollisionseffekten gegeben, die aus einem Schrödinger-System für den gemischten-Zustand oder aus der Wigner-Gleichung hergeleitet werden können. Nach der Reformulierung der eindimensionalen QHD Gleichungen mit linearem Potential als stationäre Schrödinger-Gleichung werden die semianalytischen Fassungen der QHD Gleichungen für die Gleichspannungs-Kurve betrachtet. Weiterhin werden die viskosen Stabilisierungen des QHD Modells berücksichtigt, sowie die von Gardner vorgeschlagene numerische Viskosität für das {sf upwind} Finite-Differenzen Schema berechnet. Im Weiteren wird das viskose QHD Modell aus der Wigner-Gleichung mit Fokker-Planck Kollisions-Operator hergeleitet. Dieses Modell enthält die physikalische Viskosität, die durch den Kollision-Operator eingeführt wird. Die Existenz der Lösungen (mit strikt positiver Teilchendichte) für das isotherme, stationäre, eindimensionale, viskose Modell für allgemeine Daten und nichthomogene Randbedingungen wird gezeigt. Die dafür notwendigen Abschätzungen hängen von der Viskosität ab und erlauben daher den Grenzübergang zum nicht-viskosen Fall nicht. Numerische Simulationen der Resonanz-Tunneldiode modelliert mit dem nichtisothermen, stationären, eindimensionalen, viskosen QHD Modell zeigen den Einfluss der Viskosität auf die Lösung. Unter Verwendung des von Degond und Ringhofer entwickelten Quanten-Entropie-Minimierungs-Verfahren werden die allgemeinen QHD-Gleichungen aus der Wigner-Boltzmann-Gleichung mit dem BGK-Kollisions-Operator hergeleitet. Die Herleitung basiert auf der vorsichtige Entwicklung des Quanten-Maxwellians in Potenzen der skalierten Plankschen Konstante. Das so erhaltene Modell enthält auch vertex-Terme und dispersive Terme für die Geschwindigkeit. Dadurch bleibt die Gleichspannungs-Kurve für die Resonanz-Tunneldiode unter Verwendung des allgemeinen QHD Modells in einer Dimension numerisch erhalten. Die Ergebnisse zeigen, dass der dispersive Geschwindigkeits-Term die Lösung des Systems stabilisiert.
Resumo:
This thesis investigates metallic nanostructures exhibiting surface plasmon resonance for the amplification of fluorescence signal in sandwich immunoassays. In this approach, an analyte is captured by an antibody immobilized on a plasmonic structure and detected by a subsequently bound fluorophore labeled detection antibody. The highly confined field of surface plasmons originates from collective charge oscillations which are associated with high electromagnetic field enhancements at the metal surface and allow for greatly increased fluorescence signal from the attached fluorophores. This feature allows for improving the signal-to-noise ratio in fluorescence measurements and thus advancing the sensitivity of the sensor platform. In particular, the thesis presents two plasmonic nanostructures that amplify fluorescence signal in devices that rely on epifluorescence geometry, in which the fluorophore absorbs and emits light from the same direction perpendicular to the substrate surface.rnThe first is a crossed relief gold grating that supports propagating surface plasmon polaritons (SPPs) and second, gold nanoparticles embedded in refractive index symmetric environment exhibiting collective localized surface plasmons (cLSPs). Finite-difference time-domain simulations are performed in order to design structures for the optimum amplification of established Cy5 and Alexa Fluor 647 fluorophore labels with the absorption and emission wavelengths in the red region of spectrum. The design takes into account combined effect of surface plasmon-enhanced excitation rate, directional surface plasmon-driven emission and modified quantum yield for characteristic distances in immunoassays. Homebuilt optical instruments are developed for the experimental observation of the surface plasmon mode spectrum, measurements of the angular distribution of surface plasmon-coupled fluorescence light and a setup mimicking commercial fluorescence reading systems in epifluorescence geometry.rnCrossed relief grating structures are prepared by interference lithography and multiple copies are made by UV nanoimprint lithography. The fabricated crossed diffraction gratings were utilized for sandwich immunoassay-based detection of the clinically relevant inflammation marker interleukin 6 (IL-6). The enhancement factor of the crossed grating reached EF=100 when compared to a flat gold substrate. This result is comparable to the highest reported enhancements to date, for fluorophores with relatively high intrinsic quantum yield. The measured enhancement factor excellently agrees with the predictions of the simulations and the mechanisms of the enhancement are explained in detail. Main contributions were the high electric field intensity enhancement (30-fold increase) and the directional fluorescence emission at (4-fold increase) compared to a flat gold substrate.rnCollective localized surface plasmons (cLSPs) hold potential for even stronger fluorescence enhancement of EF=1000, due to higher electric field intensity confinement. cLSPs are established by diffractive coupling of the localized surface plasmon resonance (LSPR) of metallic nanoparticles and result in a narrow resonance. Due to the narrow resonance, it is hard to overlap the cLSPs mode with the absorption and emission bands of the used fluorophore, simultaneously. Therefore, a novel two resonance structure that supports SPP and cLSP modes was proposed. It consists of a 2D array of cylindrical gold nanoparticles above a low refractive index polymer and a silver film. A structure that supports the proposed SPP and cLSP modes was prepared by employing laser interference lithography and the measured mode spectrum was compared to simulation results.rn