8 resultados para Evolutionary operators

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the quickest plant movements ever known is made by the ´explosive´ style in Marantaceae in the service of secondary pollen presentation – herewith showing a striking apomorphy to the sister Cannaceae that might be of high evolutionary consequence. Though known already since the beginning of the 19th century the underlying mechanism of the movement has hitherto not been clarified. The present study reports about the biomechanics of the style-staminode complex and the hydraulic principles of the movement. For the first time it is shown by experiment that in Maranta noctiflora through longitudinal growth of the maturing style in the ´straitjacket´ of the hooded staminode both the hold of the style prior to its release and its tensioning for the movement are brought about. The longer the style grows in relation to the enclosing hooded staminode the more does its capacity for curling up for pollen transfer increase. Hereby I distinguish between the ´basic tension´ that a growing style builds up anyway, even when the hooded staminode is removed beforehand, and the ´induced tension´ which comes about only under the pressure of a ´too short´ hooded staminode and which enables the movement. The results of these investigations are discussed in view of previous interpretations ranging from possible biomechanical to electrophysiological mechanisms. To understand furthermore by which means the style gives way to the strong bending movement without suffering outwardly visible damage I examined its anatomical structure in several genera for its mechanical and hydraulic properties and for the determination of the entire curvature after release. The actual bending part contains tubulate cells whose walls are extraordinarily porous and large longitudinal intercellular spaces. SEM indicates the starting points of cell-wall loosening in primary walls and lysis of middle lamellae - probably through an intense pectinase activity in the maturing style. Fluorescence pictures of macerated and living style-tissue confirm cell-wall perforations that do apparently connect neighbouring cells, which leads to an extremely permeable parenchyma. The ´water-body´ can be shifted from central to dorsal cell layers to support the bending. The geometrical form of the curvature is determined by the vascular bundles. I conclude that the style in Marantaceae contains no ´antagonistic´ motile tissues as in Mimosa or Dionaea. Instead, through self-maceration it develops to a ´hydraulic tissue´ which carries out an irreversible movement through a sudden reshaping. To ascertain the evolutionary consequence of this apomorphic pollination mechanism the diversity and systematic value of hooded staminodes are examined. For this hooded staminodes of 24 genera are sorted according to a minimalistic selection of shape characters and eight morphological types are abstracted from the resulting groups. These types are mapped onto an already available maximally parsimonious tree comprising five major clades. An amazing correspondence is found between the morphological types and the clades; several sister-relationships are confirmed and in cases of uncertain position possible evolutionary pathways, such as convergence, dispersal or re-migration, are discussed, as well as the great evolutionary tendencies for the entire family in which – at least as regards the shape of hooded staminodes – there is obviously a tendency from complicated to strongly simplified forms. It suggests itself that such simplifying derivations may very likely have taken place as adaptations to pollinating animals about which at present too little is known. The value of morphological characters in relation to modern phylogenetic analysis is discussed and conditions for the selection of morphological characters valuable for a systematic grouping are proposed. Altogether, in view of the evolutionary success of Marantaceae compared with Cannaceae the movement mechanism of the style-staminode complex can safely be considered a key innovation within the order Zingiberales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Marantaceae (550 Arten) sind eine weltweit verbreitete Familie von Stauden und Lianen aus dem Unterwuchs tropischer Tieflandregenwälder. Der morphologisch-ökologische Vergleich des basal abzweigenden Sarcophrynium-Astes mit dem in abgeleiteter Position stehenden Marantochloa-Ast, soll beispielhaft evolutionäre Muster in der Familie beleuchten. So wird in der Doktorarbeit zum ersten Mal ein Überblick über die Blütenbiologie und Phylogenie von rund 30 der 40 afrikanischen Marantaceae Arten präsentiert. Die Analysen basieren auf Daten von drei mehrmonatigen Feldaufenthalten in Gabun jeweils zwischen September und Januar. Vier Blütentypen werden beschrieben, die jeweils mit einer spezifischen Bestäubergilde verbunden sind (kleine, mittlere, große Bienen bzw. Vögel). Bestäubungsexperimente belegen, dass 18 Arten selbstkompatibel, aber nur zwei Arten autogam sind, also keine Bestäubungsvermittler benötigen. Der Fruchtansatz ist generell gering (10 -30 %). Die komplexe Synorganisation der Blüte ermöglicht in den Marantaceae einen explosiven Bestäubungsmechanismus. Um dessen ökologische Funktionalität zu verstehen, werden die Blüten von 66 Arten, alle wichtigen Äste der Marantaceae abdeckend, unter einem morphologisch-funktionalen Gesichtspunkt untersucht. Es gibt große Übereinstimmungen zwischen allen untersuchten Arten im Zusammenspiel (Synorganisation) der wichtigsten Bauelemente (Griffel, Kapuzenblatt, Schwielenblatt), die eine präzise Pollenübertragung ermöglichen. Basierend auf Daten von nrDNA (ITS, 5S) und cpDNA (trnL-F) wird für ein nahezu komplettes Artenspektrum die Phylogenie der zwei afrikanischen Äste erstellt. Hierauf werden morphologische und ökologische Merkmale sowie geographischer Verbreitungsmuster nach dem Parsimonieprinzip rekonstruiert, um so deren evolutionäre Bedeutung für die Marantaceae abschätzen zu können. Die Ergebnisse weisen auf die Beteiligung einer Vielzahl verschiedener Artbildungsfaktoren hin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der Globale Wandel ist im Begriff, den Tourismus zu verändern. Die Wechselwirkung von Tourismus und Klimawandel sind beidseitiger Art. Die vorliegende Arbeit zeigt Möglichkeiten der Adaption und einen wandelbaren Fremdenverkehr. Eine Übersicht der gängigen Tourismusmodelle stellt den Stand der Forschung dar. Der Fremdenverkehr ist durch drei Faktoren massiv geprägt: Die Nachfrage und Motivation, die Reisemittler und Veranstalter sowie das Destinationsangebot. Bei der Motivation wirken Motiv und Anreiz Motivationspsychologisch betrachtet auf die Reiseentscheidung deren Grundlage verarbeitete Informationen sind. Reisemittler und Veranstalter haben einen großen Einfluss auf Entscheidungsprozesse. Neue IuK Technologien haben deren Arbeit grundlegend verändert. Das Tourismusangebot wird stark durch die naturräumlichen Gegebenheiten sowie das politische System bestimmt. Überlebenswichtig für die Destination ist die evolutionstheoretisch etrachtete Fitnessmaximierung also Adaption und Wandel, um sich an geänderte Rahmenbedingungen anpassen zu können. Gerade im Bereich des Klimawandels müssen Maßnahmen ergriffen werden. Aber auch die Marktsättigung gerade in Verbindung mit der aktuellen Finanzkrise wirkt besonders schwer auf die Destination. Eine hohes Innovationsvermögen, Trendscanning und der Zusammenschluss in flexiblen Netzwerkclustern können einen Kundenmehrwert erzeugen. Die Fitnessmaximierung ist somit Überlebensziel der Destination und führt zur Kundenzufriedenheit die im Sättigungsmarkt alleinig Wachstum generieren kann.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survivin, a unique member of the family of inhibitors of apoptosis (IAP) proteins, orchestrates intracellular pathways during cell division and apoptosis. Its central regulatory function in vertebrate molecular pathways as mitotic regulator and inhibitor of apoptotic cell death has major implications for tumor cell proliferation and viability, and has inspired several approaches that target survivin for cancer therapy. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution the second, complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulatory molecule, a survivin homologue of the phylogenetically oldest extant metazoan taxon (phylum Porifera) was identified and functionally characterized. SURVL of the demosponge Suberites domuncula shares significant similarities with its metazoan homologues, ranging from conserved exon/intron structures to the presence of localization signal and protein-interaction domains, characteristic of IAP proteins. Whereas sponge tissue displayed a very low steady-state level, SURVL expression was significantly up-regulated in rapidly proliferating primmorph cells. In addition, challenge of sponge tissue and primmorphs with cadmium and the lipopeptide Pam3Cys-Ser-(Lys)4 stimulated SURVL expression, concurrent with the expression of newly discovered poriferan caspases (CASL and CASL2). Complementary functional analyses in transfected HEK-293 revealed that heterologous expression of poriferan survivin in human cells not only promotes cell proliferation but also augments resistance to cadmium-induced cell death. Taken together, these results demonstrate both a deep evolutionary conserved and fundamental dual role of survivin, and an equally conserved central position of this key regulatory molecule in interconnected pathways of cell cycle and apoptosis. Additionally, SDCASL, SDCASL2, and SDTILRc (TIR-LRR containing protein) may represent new components of the innate defense sentinel in sponges. SDCASL and SDCASL2 are two new caspase-homolog proteins with a singular structure. In addition to their CASc domains, SDCASL and SDCASL2 feature a small prodomain NH2-terminal (effector caspases) and a remarkably long COOH-terminal domain containing one or several functional double stranded RNA binding domains (dsrm). This new caspase prototype can characterize a caspase specialization coupling pathogen sensing and apoptosis, and could represent a very efficient defense mechanism. SDTILRc encompasses also a unique combination of domains: several leucine rich repeats (LRR) and a Toll/IL-1 receptor (TIR) domain. This unusual domain association may correspond to a new family of intracellular sensing protein, forming a subclass of pattern recognition receptors (PRR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to the study of Picard-Fuchs operators associated to one-parameter families of $n$-dimensional Calabi-Yau manifolds whose solutions are integrals of $(n,0)$-forms over locally constant $n$-cycles. Assuming additional conditions on these families, we describe algebraic properties of these operators which leads to the purely algebraic notion of operators of CY-type. rnMoreover, we present an explicit way to construct CY-type operators which have a linearly rigid monodromy tuple. Therefore, we first usernthe translation of the existence algorithm by N. Katz for rigid local systems to the level of tuples of matrices which was established by M. Dettweiler and S. Reiter. An appropriate translation to the level of differential operators yields families which contain operators of CY-type. rnConsidering additional operations, we are also able to construct special CY-type operators of degree four which have a non-linearly rigid monodromy tuple. This provides both previously known and new examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.