13 resultados para Dirac brackets
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In dieser Arbeit wird eine Messung des magnetischen Moments des Elektronsin wasserstoffähnlichem Kohlenstoff vorgestellt. Das Ergebnis derMessungen an einem einzelnen gespeicherten12C5+-Ionist: g = 2,001 041 596 4 (8)(6)(44). Der erste Fehler bezeichnet die statistischeUnsicherheit, der zweite Fehler die systematische Unsicherheit. Der letzteFehler resultiert aus der Unsicherheit des Verhältnisses der Massedes 12C5+-Ions und der des Elektrons. Die hohe Genauigkeitder Messung wurde durch die räumliche Trennung des Nachweises derAusrichtung des Spins und des Induzierens der spin-flips erreicht. DieMessung stellt die bisher genaueste Bestimmung eines atomaren g-Faktorsdar und bestätigt den theoretischen Wert der Göteborger Theoriegruppeauf 7*10-9. Zusammen mit diesen Rechnungen verifiziert sie dieBound-State-QED-Korrekturen genauer als 1%. Somit ist der g-Faktor desin12C5+ gebunden Elektrons neben Messungen der Lambshiftin schweren hochgeladenen Ionen der genaueste Test der Bound-State-QED.
Wird auf die Richtigkeit der Berechnung des g-Faktors des gebundenenElektrons vertraut, kann folgender Wert für die atomare Masse desElektrons gewonnen werden: me= 0,000 548 579 912 8 (15) u.
Resumo:
In den letzten fünf Jahren hat sich mit dem Begriff desspektralen Tripels eine Möglichkeit zur Beschreibungdes an Spinoren gekoppelten Gravitationsfeldes auf(euklidischen) nichtkommutativen Räumen etabliert. Die Dynamik dieses Gravitationsfeldes ist dabei durch diesogenannte spektrale Wirkung, dieSpur einer geeigneten Funktion des Dirac-Operators,bestimmt. Erstaunlicherweise kann man die vollständige Lagrange-Dichtedes (an das Gravitationsfeld gekoppelten) Standardmodellsder Elementarteilchenphysik, also insbesondere auch denmassegebenden Higgs-Sektor, als spektrale Wirkungeines entsprechenden spektralen Tripels ableiten. Diesesspektrale Tripel ist als Produkt des spektralenTripels der (kommutativen) Raumzeit mit einem speziellendiskreten spektralen Tripel gegeben. In der Arbeitwerden solche diskreten spektralen Tripel, die bis vorKurzem neben dem nichtkommutativen Torus die einzigen,bekannten nichtkommutativen Beispiele waren, klassifiziert. Damit kannnun auch untersucht werden, inwiefern sich dasStandardmodell durch diese Eigenschaft gegenüber anderenYang-Mills-Higgs-Theorien auszeichnet. Es zeigt sichallerdings, dasses - trotz mancher Einschränkung - eine sehr große Zahl vonModellen gibt, die mit Hilfe von spektralen Tripelnabgeleitet werden können. Es wäre aber auch denkbar, dass sich das spektrale Tripeldes Standardmodells durch zusätzliche Strukturen,zum Beispiel durch eine darauf ``isometrisch'' wirkendeHopf-Algebra, auszeichnet. In der Arbeit werden, um dieseFrage untersuchen zu können, sogenannte H-symmetrischespektrale Tripel, welche solche Hopf-Isometrien aufweisen,definiert.Dabei ergibt sich auch eine Möglichkeit, neue(H-symmetrische) spektrale Tripel mit Hilfe ihrerzusätzlichen Symmetrienzu konstruieren. Dieser Algorithmus wird an den Beispielender kommutativen Sphäre, deren Spin-Geometrie hier zumersten Mal vollständig in der globalen, algebraischen Sprache der NichtkommutativenGeometrie beschrieben wird, sowie dem nichtkommutativenTorus illustriert.Als Anwendung werden einige neue Beipiele konstruiert. Eswird gezeigt, dass sich für Yang-Mills Higgs-Theorien, diemit Hilfe von H-symmetrischen spektralen Tripeln abgeleitetwerden, aus den zusätzlichen Isometrien Einschränkungen andiefermionischen Massenmatrizen ergeben. Im letzten Abschnitt der Arbeit wird kurz auf dieQuantisierung der spektralen Wirkung für diskrete spektraleTripel eingegangen.Außerdem wird mit dem Begriff des spektralen Quadrupels einKonzept für die nichtkommutative Verallgemeinerungvon lorentzschen Spin-Mannigfaltigkeiten vorgestellt.
Resumo:
Im Rahmen der vorliegenden Arbeit wurde erstmals Laser-Atomspektroskopie an einem Element durchgeführt, für das bisher keine atomaren Niveaus bekannt waren. Die Experimente wurden am Element Fermium mit der Ordnungszahl Z=100 mit der Resonanzionisationsspektroskopie (RIS) in einer Puffergaszelle durchgeführt. Verwendet wurde das Isotop 255Fm mit einer Halbwertszeit von 20.1 h, das im Hochflusskernreaktor des ORNL, Oak Ridge, USA, hergestellt wurde. Die von einem elektrochemischen Filament in das Argon-Puffergas bei einer Temperatur von 960(20)°C abgedampften Fm-Atome wurden mit Lasern in einem Zweistufenprozess resonant ionisiert. Dazu wurde das Licht eines Excimerlaser gepumpten Farbstofflasers für den ersten Anregungsschritt um die Wellenlänge 400 nm durchgestimmt. Ein Teil des Excimer (XeF) Laser Pumplichtes mit den Wellenlänge 351/353 nm wurde für die nicht-resonante Ionisation verwendet. Die Ionen wurden mit Hilfe elektrischer Felder aus der optischen Zelle extrahiert und nach einem Quadrupol Massenfilter mit einem Channeltron-Detektor massenselektiv nachgewiesen. Trotz der geringen Probenmenge von 2.7 x 10^10 eingesetzten Atomen wurden zwei atomare Resonanzen bei Energien von 25099.8(2) cm-1 und 25111.8(2) cm-1 gefunden und das Sättigungsverhalten dieser Linien gemessen. Es wurde ein theoretisches Modell entwickelt, dass sowohl das spektrale Profil der sättigungsverbreiterten Linien als auch die Sättigungskurven beschreibt. Durch Anpassung an die Messdaten konnten die partiellen Übergangsraten in den 3H6 Grundzustand Aki=3.6(7) x 10^6/s und Aki=3.6(6) x 10^6/s bestimmt werden. Der Vergleich der Niveauenergien und Übergangsraten mit Multikonfigurations Dirac-Fock Rechnungen legt die spektroskopische Klassifizierung der beobachteten Niveaus als 5f12 7s7p 5I6 und 5G6 Terme nahe. Weiterhin wurde ein Übergang bei 25740 cm-1 gefunden, der aufgrund der beobachteten Linienbreite von 1000 GHz als Rydbergzustand Zustand mit der Niveauenergie 51480 cm-1 interpretiert wurde und über einen Zweiphotonen Prozess angeregt werden kann. Basierend auf dieser Annahme wurde die Obergrenze für die Ionisationsenergie IP = 52140 cm-1 = 6.5 eV abgeschätzt. In den Messungen wurden Verschiebungen in den Zeitverteilungsspektren zwischen den mono-atomaren Ionen Fm+ und Cf+ und dem Molekül-Ion UO+ festgestellt und auf Driftzeitunterschiede im elektrischen Feld der gasgefüllten optischen Zelle zurückgeführt. Unter einfachen Modellannahmen wurde daraus auf die relativen Unterschiede Delta_r(Fm+,Cf+)/r(Cf+) -0.2 % und Delta_r(UO+,Cf+)/r(Cf+) 20 % in den Ionenradien geschlossen. Über die Bestimmung der Abnahme der Fm-a Aktivität des Filamentes auf der einen Seite und die Messung der Resonanzzählrate auf der anderen Seite, wurde die Nachweiseffizienz der Apparatur zu 4.5(3) x 10^-4 bestimmt. Die Nachweisapparatur wurde mit dem Ziel weiterentwickelt, Laserspektroskopie am Isotop 251Fm durchzuführen, das über die Reaktion 249Cf(a,2n)251Fm direkt in der optischen Zelle erzeugt werden soll. Das Verfahren wurde am chemischen Homolog Erbium getestet. Dabei wurde das Isotop 163Er über die Reaktion 161Dy(a,2n)163Er erzeugt und nach Resonanzionisation nachgewiesen. Die Nachweiseffizienz der Methode wurde zu 1 x 10^-4 bestimmt.
Resumo:
The g-factor is a constant which connects the magnetic moment $vec{mu}$ of a charged particle, of charge q and mass m, with its angular momentum $vec{J}$. Thus, the magnetic moment can be writen $ vec{mu}_J=g_Jfrac{q}{2m}vec{J}$. The g-factor for a free particle of spin s=1/2 should take the value g=2. But due to quantum electro-dynamical effects it deviates from this value by a small amount, the so called g-factor anomaly $a_e$, which is of the order of $10^{-3}$ for the free electron. This deviation is even bigger if the electron is exposed to high electric fields. Therefore highly charged ions, where electric field strength gets values on the order of $10^{13}-10^{16}$V/cm at the position of the bound electron, are an interesting field of investigations to test QED-calculations. In previous experiments [H"aff00,Ver04] using a single hydrogen-like ion confined in a Penning trap an accuracy of few parts in $10^{-9}$ was obtained. In the present work a new method for precise measurement of magnetic the electronic g-factor of hydrogen-like ions is discussed. Due to the unavoidable magnetic field inhomogeneity in a Penning trap, a very important contribution to the systematic uncertainty in the previous measurements arose from the elevated energy of the ion required for the measurement of its motional frequencies. Then it was necessary to extrapolate the result to vanishing energies. In the new method the energy in the cyclotron degree of freedom is reduced to the minimum attainable energy. This method consist in measuring the reduced cyclotron frequency $nu_{+}$ indirectly by coupling the axial to the reduced cyclotron motion by irradiation of the radio frequency $nu_{coup}=nu_{+}-nu_{ax}+delta$ where $delta$ is, in principle, an unknown detuning that can be obtained from the knowledge of the coupling process. Then the only unknown parameter is the desired value of $nu_+$. As a test, a measurement with, for simplicity, artificially increased axial energy was performed yielding the result $g_{exp}=2.000~047~020~8(24)(44)$. This is in perfect agreement with both the theoretical result $g_{theo}=2.000~047~020~2(6)$ and the previous experimental result $g_{exp1}=2.000~047~025~4(15)(44).$ In the experimental results the second error-bar is due to the uncertainty in the accepted value for the electron's mass. Thus, with the new method a higher accuracy in the g-factor could lead by comparison to the theoretical value to an improved value of the electron's mass. [H"af00] H. H"affner et al., Phys. Rev. Lett. 85 (2000) 5308 [Ver04] J. Verd'u et al., Phys. Rev. Lett. 92 (2004) 093002-1
Resumo:
The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishabilty and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be interpreted as the spaces of sections of certain flat vector bundles over Q. With this technique, various results pertaining to the problem of quantum indistinguishability are reproduced in a clear and systematic way. Our method is also used in order to give a global formulation of the BR construction. As a result of this analysis, it is found that the single-valuedness condition of BR is inconsistent. Additionally, a proposal aiming at establishing the Fermi-Bose alternative, within our approach, is made.
Resumo:
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories.
Resumo:
The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.
Resumo:
Ziel dieser Dissertation ist die experimentelle Charakterisierung und quantitative Beschreibung der Hybridisierung von komplementären Nukleinsäuresträngen mit oberflächengebundenen Fängermolekülen für die Entwicklung von integrierten Biosensoren. Im Gegensatz zu lösungsbasierten Verfahren ist mit Microarray Substraten die Untersuchung vieler Nukleinsäurekombinationen parallel möglich. Als biologisch relevantes Evaluierungssystem wurde das in Eukaryoten universell exprimierte Actin Gen aus unterschiedlichen Pflanzenspezies verwendet. Dieses Testsystem ermöglicht es, nahe verwandte Pflanzenarten auf Grund von geringen Unterschieden in der Gen-Sequenz (SNPs) zu charakterisieren. Aufbauend auf dieses gut studierte Modell eines House-Keeping Genes wurde ein umfassendes Microarray System, bestehend aus kurzen und langen Oligonukleotiden (mit eingebauten LNA-Molekülen), cDNAs sowie DNA und RNA Targets realisiert. Damit konnte ein für online Messung optimiertes Testsystem mit hohen Signalstärken entwickelt werden. Basierend auf den Ergebnissen wurde der gesamte Signalpfad von Nukleinsärekonzentration bis zum digitalen Wert modelliert. Die aus der Entwicklung und den Experimenten gewonnen Erkenntnisse über die Kinetik und Thermodynamik von Hybridisierung sind in drei Publikationen zusammengefasst die das Rückgrat dieser Dissertation bilden. Die erste Publikation beschreibt die Verbesserung der Reproduzierbarkeit und Spezifizität von Microarray Ergebnissen durch online Messung von Kinetik und Thermodynamik gegenüber endpunktbasierten Messungen mit Standard Microarrays. Für die Auswertung der riesigen Datenmengen wurden zwei Algorithmen entwickelt, eine reaktionskinetische Modellierung der Isothermen und ein auf der Fermi-Dirac Statistik beruhende Beschreibung des Schmelzüberganges. Diese Algorithmen werden in der zweiten Publikation beschrieben. Durch die Realisierung von gleichen Sequenzen in den chemisch unterschiedlichen Nukleinsäuren (DNA, RNA und LNA) ist es möglich, definierte Unterschiede in der Konformation des Riboserings und der C5-Methylgruppe der Pyrimidine zu untersuchen. Die kompetitive Wechselwirkung dieser unterschiedlichen Nukleinsäuren gleicher Sequenz und die Auswirkungen auf Kinetik und Thermodynamik ist das Thema der dritten Publikation. Neben der molekularbiologischen und technologischen Entwicklung im Bereich der Sensorik von Hybridisierungsreaktionen oberflächengebundener Nukleinsäuremolekülen, der automatisierten Auswertung und Modellierung der anfallenden Datenmengen und der damit verbundenen besseren quantitativen Beschreibung von Kinetik und Thermodynamik dieser Reaktionen tragen die Ergebnisse zum besseren Verständnis der physikalisch-chemischen Struktur des elementarsten biologischen Moleküls und seiner nach wie vor nicht vollständig verstandenen Spezifizität bei.
Resumo:
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. \\rnThe only known theoretical, non-perturbative and {\it ab initio} method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations.rnrnThis thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses.\\rnFirst of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be $m_{ud}^{\overline{\text{MS}}}(2\text{ GeV}) = 3.03(17)(38)\text{ MeV}$. This value is in good agreement with values from experiments and other lattice determinations.\\rnElectro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass.\newpage Finally we perform a continuum extrapolation and chiral extrapolations to the physical point.\\rnIn addition, we investigated so called excited state contributions to these observables. A technique was used, the summation method, which reduces these effects significantly and a much better agreement with experimental data was achieved. On the lattice, the Dirac radius and the axial charge are usually found to be much smaller than the experimental values. However, due to the carefully investigation of all the afore-mentioned systematic effects we get $\langle r_1^2\rangle_{u-d}=0.627(54)\text{ fm}^2$ and $g_A=1.218(92)$, which is in agreement with the experimental values within the errors.rnrnThe first three chapters introduce the theoretical background of form factors of the nucleon and lattice QCD in general. In chapter four the lattice spacing is determined. The computation of nucleon form factors is described in chapter five where systematic effects are investigated. All results are presented in chapter six. The thesis ends with a summary of the results and identifies options to complement and extend the calculations presented. rn
Resumo:
This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications.rnThe first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co2MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound.rnA major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. Few studies have been reported on thermoelectric properties of p-type Heusler compounds. Therefore, this thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi1−xMxSn and CoTi1−xMxSb (where M = Sc, V and 0 ≤ x ≤ 0.2) were synthesized and investigated theoretically and experimentally with respect to electronic structure and transport properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (at 350 K) was obtained for NiTi0.26Sc0.04Zr0.35Hf0.35Sn, which is one of the highest values for p-type thermoelectric compounds based on Heusler alloys up to now. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi0.3Zr0.35Hf0.35Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk sensitive HAXPES. The linear behavior of the spectra close to εF proves the bulk origin of Dirac-cone type density of states. Furthermore, a systematic study on the optical and transport properties of PtYSb is presented. The compound exhibits promising thermoelectric properties with a high figure of merit (ZT = 0.2) and a Hall mobility μh of 300 cm2/Vs at 350 K.rnThe last part of this thesis describes the linear dichroism in angular-resolved photoemission from the valence band of NiTi0.9Sc0.1Sn and NiMnSb. High resolution photoelectron spectroscopy was performed with an excitation energy of hν = 7.938 keV. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. Noticeable linear dichroism is found in the valence bands and this allows for a symmetry analysis of the contributing states. The differences in the spectra are found to be caused by symmetry dependent angular asymmetry parameters, and these occur even in polycrystalline samples without preferential crystallographic orientation.rnIn summary, Heusler compounds with 1:1:1 and 2:1:1 stoichiometry were synthesized and examined by chemical and physical methods. Overall, this thesis shows that the combination of first-principle calculations, transport measurements and high resolution high energy photoelectron spectroscopy analysis is a very powerful tool for the design and development of new materials for a wide range of applications from spintronic applications to thermoelectric applications.rn
Resumo:
In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.
Resumo:
This thesis deals with three different physical models, where each model involves a random component which is linked to a cubic lattice. First, a model is studied, which is used in numerical calculations of Quantum Chromodynamics.In these calculations random gauge-fields are distributed on the bonds of the lattice. The formulation of the model is fitted into the mathematical framework of ergodic operator families. We prove, that for small coupling constants, the ergodicity of the underlying probability measure is indeed ensured and that the integrated density of states of the Wilson-Dirac operator exists. The physical situations treated in the next two chapters are more similar to one another. In both cases the principle idea is to study a fermion system in a cubic crystal with impurities, that are modeled by a random potential located at the lattice sites. In the second model we apply the Hartree-Fock approximation to such a system. For the case of reduced Hartree-Fock theory at positive temperatures and a fixed chemical potential we consider the limit of an infinite system. In that case we show the existence and uniqueness of minimizers of the Hartree-Fock functional. In the third model we formulate the fermion system algebraically via C*-algebras. The question imposed here is to calculate the heat production of the system under the influence of an outer electromagnetic field. We show that the heat production corresponds exactly to what is empirically predicted by Joule's law in the regime of linear response.
Resumo:
Most quark actions in lattice QCD encounter difficulties with chiral sym-rnmetry and its spontaneous breakdown. Minimally doubled fermions (MDF)rnare a category of strictly local chiral lattice fermions, whose continuum limitrnreproduces two degenerate quark flavours. The two poles of their Dirac ope-rnrator are aligned such that symmetries under charge conjugation or reflectionrnof one particular direction are explictly broken at finite lattice spacing. Pro-rnperties of MDF are scrutinised with regard to broken symmetry and mesonrnspectrum to discern their suitability for numerical studies of QCD.rnrnInteractions induce anisotropic operator mixing for MDF. Hence, resto-rnration of broken symmetries in the continuum limit requires three coun-rnterterms, one of which is power-law divergent. Counterterms and operatorrnmixing are studied perturbatively for two variants of MDF. Two indepen-rndent non-perturbative procedures for removal of the power-law divergencernare developed by means of a numerical study of hadronic observables forrnone variant of MDF in quenched approximation. Though three out of fourrnpseudoscalar mesons are affected by lattice artefacts, the spectrum’s conti-rnnuum limit is consistent with two-flavour QCD. Thus, suitability of MDF forrnnumerical studies of QCD in the quenched approximation is demonstrated.