13 resultados para Columns, Doric.

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poröse Medien spielen in der Hydrosphäre eine wesentliche Rolle bei der Strömung und beim Transport von Stoffen. In diesem Raum finden komplexe Prozesse statt: Advektion, Kon-vektion, Diffusion, hydromechanische Dispersion, Sorption, Komplexierung, Ionenaustausch und Abbau. Die strömungsmechanischen- und die Transportverhältnisse in porösen Medien werden direkt durch die Geometrie des Porenraumes selbst und durch die Eigenschaften der transportierten (oder strömenden) Medien bestimmt. In der Praxis wird eine Vielzahl von empirischen Modellen verwendet, die die Eigenschaften des porösen Mediums in repräsentativen Elementarvolumen wiedergeben. Die Ermittlung der in empirischen Modellen verwendeten Materialparameter erfolgt über Labor- oder Feldbestimmungsmethoden. Im Rahmen dieser Arbeit wurde das Computer-modell PoreFlow entwickelt, welches die hydraulischen Eigenschaften eines korngestützten porösen Mediums aus der mikroskopischen Modellierung des Fluidflusses und Transportes ableitet. Das poröse Modellmedium wird durch ein dreidimensionales Kugelpackungsmodell, zusam-mengesetzt aus einer beliebigen Kornverteilung, dargestellt. Im Modellporenraum wird die Strömung eines Fluids basierend auf einer stationären Lösung der Navier-Stokes-Gleichung simuliert. Die Ergebnisse der Modellsimulationen an verschiedenen Modellmedien werden mit den Ergebnissen von Säulenversuchen verglichen. Es zeigt sich eine deutliche Abhängigkeit der Strömungs- und Transportparameter von der Porenraumgeometrie sowohl in den Modell-simulationen als auch in den Säulenexperimenten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the synthesis of a new class of rod-coil block copolymers, oligosubstituted shape persistent macrocycles, (coil-ring-coil block copolymers), and their behavior in solution and in the solid state.The coil-ring-coil block copolymers are formed by nanometer sized shape persistent macrocycles based on the phenyl-ethynyl backbone as rigid block and oligomers of polystyrene or polydimethylsiloxane as flexible blocks. The strategy that has been followed is to synthesize the macrocycles with an alcoholic functionality and the polymer carboxylic acids independently, and then bind them together by esterification. The ester bond is stable and relatively easy to form.The synthesis of the shape persistent macrocycles is based on two separate steps. In the first step the building blocks of the macrocycles are connected by Hagiara-Sogonaschira coupling to form an 'half-ring' as precursor, that contains two free acetylenes. In the second step the half-ring is cyclized by forming two sp-sp bonds via a copper-catalyzed Glaser coupling under pseudo-high-dilution conditions. The polystyrene carboxylic acid was prepared directly by siphoning the living anionic polymer chain into a THF solution, saturated with CO2, while the polydimethylsiloxane carboxylic acid was obtained by hydrosilylating an unsaturated benzylester with an Si-H terminated polydimethylsiloxane, and cleavage of the ester. The carbodiimide coupling was found to be the best way to connect macrocycles and polymers in high yield and high purity.The polystyrene-ring-polystyrene block copolymers are, depending on the molecular weight of the polystyrene, lyotropic liquid crystals in cyclohexane. The aggregation behavior of the copolymers in solution was investigated in more detail using several technique. As a result it can be concluded that the polystyrene-ring-polystyrene block copolymers can aggregate into hollow cylinder-like objects with an average length of 700 nm by a combination of shape complementary and demixing of rigid and flexible polymer parts. The resulting structure can be described as supramolecular hollow cylindrical brush.If the lyotropic solution of the polystyrene-ring-polystyrene block copolymers are dried, they remain birefringent indicating that the solid state has an ordered structure. The polydimethylsiloxane-ring-polydimethylsiloxane block copolymers are more or less fluid at room temperature, and are all birefringent (termotropic liquid crystals) as well. This is a prove that the copolymers are ordered in the fluid state. By a careful investigation using electron diffraction and wide-angle X-ray scattering, it has been possible to derive a model for the 3D-order of the copolymers. The data indicate a lamella structure for both type of copolymers. The macrocycles are arranged in a layer of columns. These crystalline layers are separated by amorphous layers which contain the polymers substituents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations on formation and specification of neural precursor cells in the central nervous system of the Drosophila melanogaster embryoSpecification of a unique cell fate during development of a multicellular organism often is a function of its position. The Drosophila central nervous system (CNS) provides an ideal system to dissect signalling events during development that lead to cell specific patterns. Different cell types in the CNS are formed from a relatively few precursor cells, the neuroblasts (NBs), which delaminate from the neurogenic region of the ectoderm. The delamination occurs in five waves, S1-S5, finally leading to a subepidermal layer consisting of about 30 NBs, each with a unique identity, arranged in a stereotyped spatial pattern in each hemisegment. This information depends on several factors such as the concentrations of various morphogens, cell-cell interactions and long range signals present at the position and time of its birth. The early NBs, delaminating during S1 and S2, form an orthogonal array of four rows (2/3,4,5,6/7) and three columns (medial, intermediate, and lateral) . However, the three column and four row-arrangement pattern is only transitory during early stages of neurogenesis which is obscured by late emerging (S3-S5) neuroblasts (Doe and Goodman, 1985; Goodman and Doe, 1993). Therefore the aim of my study has been to identify novel genes which play a role in the formation or specification of late delaminating NBs.In this study the gene anterior open or yan was picked up in a genetic screen to identity novel and yet unidentified genes in the process of late neuroblast formation and specification. I have shown that the gene yan is responsible for maintaining the cells of the neuroectoderm in an undifferentiated state by interfering with the Notch signalling mechanism. Secondly, I have studied the function and interactions of segment polarity genes within a certain neuroectodermal region, namely the engrailed (en) expressing domain, with regard to the fate specification of a set of late neuroblasts, namely NB 6-4 and NB 7-3. I have dissected the regulatory interaction of the segment polarity genes wingless (wg), hedgehog (hh) and engrailed (en) as they maintain each other’s expression to show that En is a prerequisite for neurogenesis and show that the interplay of the segmentation genes naked (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment of NB 7-3 and NB 6-4 cell fate. I have shown that in the absence of either nkd or gsb one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aufbau einer kontinuierlichen, mehrdimensionalen Hochleistungs-flüssigchromatographie-Anlage für die Trennung von Proteinen und Peptiden mit integrierter größenselektiver ProbenfraktionierungEs wurde eine mehrdimensionale HPLC-Trennmethode für Proteine und Peptide mit einem Molekulargewicht von <15 kDa entwickelt.Im ersten Schritt werden die Zielanalyte von höhermolekularen sowie nicht ionischen Bestandteilen mit Hilfe von 'Restricted Access Materialien' (RAM) mit Ionenaustauscher-Funktionalität getrennt. Anschließend werden die Proteine auf einer analytischen Ionenaustauscher-Säule sowie auf Reversed-Phase-Säulen getrennt. Zur Vermeidung von Probenverlusten wurde ein kontinuierlich arbeitendes, voll automatisiertes System auf Basis unterschiedlicher Trenngeschwindigkeiten und vier parallelen RP-Säulen aufgebaut.Es werden jeweils zwei RP-Säulen gleichzeitig, jedoch mit zeitlich versetztem Beginn eluiert, um durch flache Gradienten ausreichende Trennleistungen zu erhalten. Während die dritte Säule regeneriert wird, erfolgt das Beladen der vierte Säule durch Anreicherung der Proteine und Peptide am Säulenkopf. Während der Gesamtanalysenzeit von 96 Minuten werden in Intervallen von 4 Minuten Fraktionen aus der 1. Dimension auf die RP-Säulen überführt und innerhalb von 8 Minuten getrennt, wobei 24 RP-Chromatogramme resultieren.Als Testsubstanzen wurden u.a. Standardproteine, Proteine und Peptide aus humanem Hämofiltrat sowie aus Lungenfibroblast-Zellkulturüberständen eingesetzt. Weiterhin wurden Fraktionen gesammelt und mittels MALDI-TOF Massenspektrometrie untersucht. Bei einer Injektion wurden in den 24 RP-Chromatogrammen mehr als 1000 Peaks aufgelöst. Der theoretische Wert der Peakkapazität liegt bei ungefähr 3000.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Therapeutisches Drug Monitoring (TDM) wird zur individuellen Dosiseinstellung genutzt, um die Effizienz der Medikamentenwirkung zu steigern und das Auftreten von Nebenwirkungen zu senken. Für das TDM von Antipsychotika und Antidepressiva besteht allerdings das Problem, dass es mehr als 50 Medikamente gibt. Ein TDM-Labor muss dementsprechend über 50 verschiedene Wirkstoffe und zusätzlich aktive Metaboliten messen. Mit der Flüssigchromatographie (LC oder HPLC) ist die Analyse vieler unterschiedlicher Medikamente möglich. LC mit Säulenschaltung erlaubt eine Automatisierung. Dabei wird Blutserum oder -plasma mit oder ohne vorherige Proteinfällung auf eine Vorsäule aufgetragen. Nach Auswaschen von störenden Matrixbestandteilen werden die Medikamente auf einer nachgeschalteten analytischen Säule getrennt und über Ultraviolettspektroskopie (UV) oder Massenspektrometrie (MS) detektiert. Ziel dieser Arbeit war es, LC-Methoden zu entwickeln, die die Messung möglichst vieler Antipsychotika und Antidepressiva erlaubt und die für die TDM-Routine geeignet ist. Eine mit C8-modifiziertem Kieselgel gefüllte Säule (20 µm 10x4.0 mm I.D.) erwies sich in Vorexperimenten als optimal geeignet bezüglich Extraktionsverhalten, Regenerierbarkeit und Stabilität. Mit einer ersten HPLC-UV-Methode mit Säulenschaltung konnten 20 verschiedene Psychopharmaka einschließlich ihrer Metabolite, also insgesamt 30 verschiedene Substanzen quantitativ erfasst werden. Die Analysenzeit betrug 30 Minuten. Die Vorsäule erlaubte 150 Injektionen, die analytische Säule konnte mit mehr als 300 Plasmainjektionen belastet werden. Abhängig vom Analyten, musste allerdings das Injektionsvolumen, die Flussrate oder die Detektionswellenlänge verändert werden. Die Methode war daher für eine Routineanwendung nur eingeschränkt geeignet. Mit einer zweiten HPLC-UV-Methode konnten 43 verschiedene Antipsychotika und Antidepressiva inklusive Metaboliten nachgewiesen werden. Nach Vorreinigung über C8-Material (10 µm, 10x4 mm I.D.) erfolgte die Trennung auf Hypersil ODS (5 µm Partikelgröße) in der analytischen Säule (250x4.6 mm I.D.) mit 37.5% Acetonitril im analytischen Eluenten. Die optimale Flussrate war 1.5 ml/min und die Detektionswellenlänge 254 nm. In einer Einzelprobe, konnten mit dieser Methode 7 bis 8 unterschiedliche Substanzen gemessen werden. Für die Antipsychotika Clozapin, Olanzapin, Perazin, Quetiapin und Ziprasidon wurde die Methode validiert. Der Variationskoeffizient (VK%) für die Impräzision lag zwischen 0.2 und 6.1%. Im erforderlichen Messbereich war die Methode linear (Korrelationskoeffizienten, R2 zwischen 0.9765 und 0.9816). Die absolute und analytische Wiederfindung lagen zwischen 98 und 118 %. Die für das TDM erforderlichen unteren Nachweisgrenzen wurden erreicht. Für Olanzapin betrug sie 5 ng/ml. Die Methode wurde an Patienten für das TDM getestet. Sie erwies sich für das TDM als sehr gut geeignet. Nach retrospektiver Auswertung von Patientendaten konnte erstmalig ein möglicher therapeutischer Bereich für Quetiapin (40-170 ng/ml) und Ziprasidon (40-130 ng/ml) formuliert werden. Mit einem Massenspektrometer als Detektor war die Messung von acht Neuroleptika und ihren Metaboliten möglich. 12 Substanzen konnten in einem Lauf bestimmt werden: Amisulprid, Clozapin, N-Desmethylclozapin, Clozapin-N-oxid, Haloperidol, Risperidon, 9-Hydroxyrisperidon, Olanzapin, Perazin, N-Desmethylperazin, Quetiapin und Ziprasidon. Nach Vorreinigung mit C8-Material (20 µm 10x4.0 mm I.D.) erfolgte die Trennung auf Synergi MAX-RP C12 (4 µm 150 x 4.6 mm). Die Validierung der HPLC-MS-Methode belegten einen linearen Zusammenhang zwischen Konzentration und Detektorsignal (R2= 0,9974 bis 0.9999). Die Impräzision lag zwischen 0.84 bis 9.78%. Die für das TDM erforderlichen unteren Nachweisgrenzen wurden erreicht. Es gab keine Hinweise auf das Auftreten von Ion Suppression durch Matrixbestandteile. Die absolute und analytische Wiederfindung lag zwischen 89 und 107 %. Es zeigte sich, dass die HPLC-MS-Methode ohne Modifikation erweitert werden kann und anscheinend mehr als 30 verschiedene Psychopharmaka erfasst werden können. Mit den entwickelten flüssigchromatographischen Methoden stehen neue Verfahren für das TDM von Antipsychotika und Antidepressiva zur Verfügung, die es erlauben, mit einer Methode verschiedene Psychopharmaka und ihre aktiven Metabolite zu messen. Damit kann die Behandlung psychiatrischer Patienten insbesondere mit Antipsychotika verbessert werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this thesis was the in-situ application of the new analytical technique "GCxGC" in both the marine and continental boundary layer, as well as in the free troposphere. Biogenic and anthropogenic VOCs were analysed and used to characterise local chemistry at the individual measurement sites. The first part of the thesis work was the characterisation of a new set of columns that was to be used later in the field. To simplify the identification, a time-of-flight mass spectrometer (TOF-MS) detector was coupled to the GCxGC. In the field the TOF-MS was substituted by a more robust and tractable flame ionisation detector (FID), which is more suitable for quantitative measurements. During the process, a variety of volatile organic compounds could be assigned to different environmental sources, e.g. plankton sources, eucalyptus forest or urban centers. In-situ measurements of biogenic and anthropogenic VOCs were conducted at the Meteorological Observatory Hohenpeissenberg (MOHP), Germany, applying a thermodesorption-GCxGC-FID system. The measured VOCs were compared to GC-MS measurements routinely conducted at the MOHP as well as to PTR-MS measurements. Furthermore, a compressed ambient air standard was measured from three different gas chromatographic instruments and the results were compared. With few exceptions, the in-situ, as well as the standard measurements, revealed good agreement between the individual instruments. Diurnal cycles were observed, with differing patterns for the biogenic and the anthropogenic compounds. The variability-lifetime relationship of compounds with atmospheric lifetimes from a few hours to a few days in presence of O3 and OH was examined. It revealed a weak but significant influence of chemistry on these short-lived VOCs at the site. The relationship was also used to estimate the average OH radical concentration during the campaign, which was compared to in-situ OH measurements (1.7 x 10^6 molecules/cm^3, 0.071 ppt) for the first time. The OH concentration ranging from 3.5 to 6.5 x 10^5 molecules/cm^3 (0.015 to 0.027 ppt) obtained with this method represents an approximation of the average OH concentration influencing the discussed VOCs from emission to measurement. Based on these findings, the average concentration of the nighttime NO3 radicals was estimated using the same approach and found to range from 2.2 to 5.0 x 10^8 molecules/cm^3 (9.2 to 21.0 ppt). During the MINATROC field campaign, in-situ ambient air measurements with the GCxGC-FID were conducted at Tenerife, Spain. Although the station is mainly situated in the free troposphere, local influences of anthropogenic and biogenic VOCs were observed. Due to a strong dust event originating from Western Africa it was possible to compare the mixing ratios during normal and elevated dust loading in the atmosphere. The mixing ratios during the dust event were found to be lower. However, this could not be attributed to heterogeneous reactions as there was a change in the wind direction from northwesterly to southeasterly during the dust event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, an improved protocol for inverse size-exclusion chromatography (ISEC) was established to assess important pore structural data of porous silicas as stationary phases in packed chromatographic columns. After the validity of the values generated by ISEC was checked by comparison with data obtained from traditional methods like nitrogen sorption at 77 K (Study A), the method could be successfully employed as valuable tool at the development of bonded poly(methacrylate)-coated silicas, while traditional methods generate partially incorrect pore structural information (Study B). Study A: Different mesoporous silicas were converted by a pseudomorphical transition into ordered MCM-41-type silica while maintaining the particle-size and -shape. The essential parameters like specific surface area, average pore diameter and specific pore volume, the pore connectivity from ISEC remained nearly the same which was reflected by the same course of the theoretical plate height vs. linear velocity curves. Study B: In the development of bonded poly(methacrylate)-coated silicas for the reversed phase separation of biopolymers, ISEC was the only method to generate valid pore structural information of the polymer-coated materials. Synthesis procedures were developed to obtain reproducibly covalently bonded poly(methacrylate) coatings with good thermal stability on different base materials, employing as well particulate and monolithic materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iodine chemistry plays an important role in the tropospheric ozone depletion and the new particle formation in the Marine Boundary Layer (MBL). The sources, reaction pathways, and the sinks of iodine are investigated using lab experiments and field observations. The aims of this work are, firstly, to develop analytical methods for iodine measurements of marine aerosol samples especially for iodine speciation in the soluble iodine; secondly, to apply the analytical methods in field collected aerosol samples, and to estimate the characteristics of aerosol iodine in the MBL. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) was the technique used for iodine measurements. Offline methods using water extraction and Tetra-methyl-ammonium-hydroxide (TMAH) extraction were applied to measure total soluble iodine (TSI) and total insoluble iodine (TII) in the marine aerosol samples. External standard calibration and isotope dilution analysis (IDA) were both conducted for iodine quantification and the limits of detection (LODs) were both 0.1 μg L-1 for TSI and TII measurements. Online couplings of Ion Chromatography (IC)-ICP-MS and Gel electrophoresis (GE)-ICP-MS were both developed for soluble iodine speciation. Anion exchange columns were adopted for IC-ICP-MS systems. Iodide, iodate, and unknown signal(s) were observed in these methods. Iodide and iodate were separated successfully and the LODs were 0.1 and 0.5 μg L-1, respectively. Unknown signals were soluble organic iodine species (SOI) and quantified by the calibration curve of iodide, but not clearly identified and quantified yet. These analytical methods were all applied to the iodine measurements of marine aerosol samples from the worldwide filed campaigns. The TSI and TII concentrations (medians) in PM2.5 were found to be 240.87 pmol m-3 and 105.37 pmol m-3 at Mace Head, west coast of Ireland, as well as 119.10 pmol m-3 and 97.88 pmol m-3 in the cruise campaign over the North Atlantic Ocean, during June – July 2006. Inorganic iodine, namely iodide and iodate, was the minor iodine fraction in both campaigns, accounting for 7.3% (median) and 5.8% (median) in PM2.5 iodine at Mace Head and over the North Atlantic Ocean, respectively. Iodide concentrations were higher than iodate in most of the samples. In the contrast, more than 90% of TSI was SOI and the SOI concentration was correlated significantly with the iodide concentration. The correlation coefficients (R2) were both higher than 0.5 at Mace Head and in the first leg of the cruise. Size fractionated aerosol samples collected by 5 stage Berner impactor cascade sampler showed similar proportions of inorganic and organic iodine. Significant correlations were obtained in the particle size ranges of 0.25 – 0.71 μm and 0.71 – 2.0 μm between SOI and iodide, and better correlations were found in sunny days. TSI and iodide existed mainly in fine particle size range (< 2.0 μm) and iodate resided in coarse range (2.0 – 10 μm). Aerosol iodine was suggested to be related to the primary iodine release in the tidal zone. Natural meteorological conditions such as solar radiation, raining etc were observed to have influence on the aerosol iodine. During the ship campaign over the North Atlantic Ocean (January – February 2007), the TSI concentrations (medians) ranged 35.14 – 60.63 pmol m-3 among the 5 stages. Likewise, SOI was found to be the most abundant iodine fraction in TSI with a median of 98.6%. Significant correlation also presented between SOI and iodide in the size range of 2.0 – 5.9 μm. Higher iodate concentration was again found in the higher particle size range, similar to that at Mace Head. Airmass transport from the biogenic bloom region and the Antarctic ice front sector was observed to play an important role in aerosol iodine enhancement. The TSI concentrations observed along the 30,000 km long cruise round trip from East Asia to Antarctica during November 2005 – March 2006 were much lower than in the other campaigns, with a median of 6.51 pmol m-3. Approximately 70% of the TSI was SOI on average. The abundances of inorganic iodine including iodine and iodide were less than 30% of TSI. The median value of iodide was 1.49 pmol m-3, which was more than four fold higher than that of iodate (median, 0.28 pmol m-3). Spatial variation indicated highest aerosol iodine appearing in the tropical area. Iodine level was considerably lower in coastal Antarctica with the TSI median of 3.22 pmol m-3. However, airmass transport from the ice front sector was correlated with the enhance TSI level, suggesting the unrevealed source of iodine in the polar region. In addition, significant correlation between SOI and iodide was also shown in this campaign. A global distribution in aerosol was shown in the field campaigns in this work. SOI was verified globally ubiquitous due to the presence in the different sampling locations and its high proportion in TSI in the marine aerosols. The correlations between SOI and iodide were obtained not only in different locations but also in different seasons, implying the possible mechanism of iodide production through SOI decomposition. Nevertheless, future studies are needed for improving the current understanding of iodine chemistry in the MBL (e.g. SOI identification and quantification as well as the update modeling involving organic matters).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five different methods were critically examined to characterize the pore structure of the silica monoliths. The mesopore characterization was performed using: a) the classical BJH method of nitrogen sorption data, which showed overestimated values in the mesopore distribution and was improved by using the NLDFT method, b) the ISEC method implementing the PPM and PNM models, which were especially developed for monolithic silicas, that contrary to the particulate supports, demonstrate the two inflection points in the ISEC curve, enabling the calculation of pore connectivity, a measure for the mass transfer kinetics in the mesopore network, c) the mercury porosimetry using a new recommended mercury contact angle values. rnThe results of the characterization of mesopores of monolithic silica columns by the three methods indicated that all methods were useful with respect to the pore size distribution by volume, but only the ISEC method with implemented PPM and PNM models gave the average pore size and distribution based on the number average and the pore connectivity values.rnThe characterization of the flow-through pore was performed by two different methods: a) the mercury porosimetry, which was used not only for average flow-through pore value estimation, but also the assessment of entrapment. It was found that the mass transfer from the flow-through pores to mesopores was not hindered in case of small sized flow-through pores with a narrow distribution, b) the liquid penetration where the average flow-through pore values were obtained via existing equations and improved by the additional methods developed according to Hagen-Poiseuille rules. The result was that not the flow-through pore size influences the column bock pressure, but the surface area to volume ratio of silica skeleton is most decisive. Thus the monolith with lowest ratio values will be the most permeable. rnThe flow-through pore characterization results obtained by mercury porosimetry and liquid permeability were compared with the ones from imaging and image analysis. All named methods enable a reliable characterization of the flow-through pore diameters for the monolithic silica columns, but special care should be taken about the chosen theoretical model.rnThe measured pore characterization parameters were then linked with the mass transfer properties of monolithic silica columns. As indicated by the ISEC results, no restrictions in mass transfer resistance were noticed in mesopores due to their high connectivity. The mercury porosimetry results also gave evidence that no restrictions occur for mass transfer from flow-through pores to mesopores in the small scaled silica monoliths with narrow distribution. rnThe prediction of the optimum regimes of the pore structural parameters for the given target parameters in HPLC separations was performed. It was found that a low mass transfer resistance in the mesopore volume is achieved when the nominal diameter of the number average size distribution of the mesopores is appr. an order of magnitude larger that the molecular radius of the analyte. The effective diffusion coefficient of an analyte molecule in the mesopore volume is strongly dependent on the value of the nominal pore diameter of the number averaged pore size distribution. The mesopore size has to be adapted to the molecular size of the analyte, in particular for peptides and proteins. rnThe study on flow-through pores of silica monoliths demonstrated that the surface to volume of the skeletons ratio and external porosity are decisive for the column efficiency. The latter is independent from the flow-through pore diameter. The flow-through pore characteristics by direct and indirect approaches were assessed and theoretical column efficiency curves were derived. The study showed that next to the surface to volume ratio, the total porosity and its distribution of the flow-through pores and mesopores have a substantial effect on the column plate number, especially as the extent of adsorption increases. The column efficiency is increasing with decreasing flow through pore diameter, decreasing with external porosity, and increasing with total porosity. Though this tendency has a limit due to heterogeneity of the studied monolithic samples. We found that the maximum efficiency of the studied monolithic research columns could be reached at a skeleton diameter of ~ 0.5 µm. Furthermore when the intention is to maximize the column efficiency, more homogeneous monoliths should be prepared.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The results are compared for the different compounds and methods and, where available, with experimental data. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. When taking only intra-columnar transport into account, the mobility is orders of magnitude lower than in the three-dimensional case. BTBT is a promising material for solution-processed organic field-effect transistors. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The resulting broad transfer integral distributions modify the connectivity of the system but sufficiently many fast percolation paths remain for the charges. Rubrene, indolocarbazole and BBBT are examples of crystals without significant static disorder. The high mobility of rubrene is explained by two main features: first, the shifted cofacial alignment of its molecules, and second, the high center of mass vibrational frequency. In comparsion to SCD, only KMC based on Marcus rates is capable of describing neighbors with low coupling and of taking static disorder into account three-dimensionally. Thus it is the method of choice for crystalline systems dominated by static disorder. However, it is inappropriate for the case of strong coupling and underestimates the mobility of well-ordered crystals. SCD, despite its one-dimensionality, is valuable for crystals with strong coupling and little disorder. It also allows correct treatment of dynamical effects, such as intermolecular vibrations of the molecules. Rate equations are incapable of this, because simulations are performed on static snapshots. We have thus shown strengths and weaknesses of two state of the art models used to study charge transport in organic compounds, partially developed a program to compute and visualize transfer integral distributions and other charge transport properties, and found structure-mobility relations for several promising organic semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis was undertaken to explore possible applications of high gradient magnetic separation (HGMS) for the separation of RBCs infected with Plasmodium falciparum, with the dual aim of establishing a novel and superior method for isolating late-stage infected cells, and of obtaining synchronized cell cultures.rnThe presented work presents protocols for HGMS of parasitized RBCs that fulfil these aims. Late-stage parasitized cell can be isolated essentially devoid of contamination with non-infected and ring-stage infected cells. Such an easy method for a highly quantitative and qualitative purification has not yet been reported. Synchronous cultures can be obtained both following depletion of late-stage infected cells, and following isolation of the latter. The quality of synchronization cultures matches that of sorbitol lysis, the current standard method for malaria culture synchronization. An advantage of HGMS is the avoidance of osmotic stress for RBCs. The new methods further have the appeal of high reproducibility, cost-effectiveness, and simple protocol.rnIt should be possible to take the methods beyond Plasmodium infected RBCs. Most magnetic separation techniques in the sector of biomedical research employ columns with a hydrophilic polymer-coated matrix. Our procedure employs an optimized buffer system. Polymer coating becomes unnecessary and uncoated columns are available at a fraction of the cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. There are two projects in this thesis. In project1, we performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1–2 s in duration and ~10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150–300 ms duration and 30–40 Hz in frequency occurred every 10–30 s. (3) Long oscillations appeared only every ~20 min and revealed the largest amplitude (250–750 µV) and longest duration (>40 s). These three distinct patterns of early oscillatory activity differently synchronized the neonatal cortical network. Whereas spindle bursts and gamma oscillations did not propagate and synchronized a local neuronal network of 200–400 µm in diameter, long oscillations propagated with 25–30 µm/s and synchronized 600-800 µm large ensembles. All three activity patterns were triggered by sensory activation. Single electrical stimulation of the whisker pad or tactile whisker activation elicited neocortical spindle bursts and gamma activity. Long oscillations could be only evoked by repetitive sensory stimulation. The neonatal oscillatory patterns in vivo depended on NMDAreceptor-mediated synaptic transmission and gap junctional coupling. Whereas spindle bursts and gamma oscillations may represent an early functional columnar-like pattern, long oscillations may serve as a propagating activation signal consolidating these immature neuronal networks. In project2, Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex and somatosensory thalamus of newborn rats in vivo, we found that spontaneous and whisker stimulation induced activity patterns were restricted to functional cortical columns already at the day of birth. Spontaneous and stimulus evoked cortical activity consisted of gamma oscillations followed by spindle bursts. Spontaneous events were mainly generated in the thalamus or by spontaneous whisker movements. Our findings indicate that during early developmental stages cortical networks self-organize in ontogenetic columns via spontaneous gamma oscillations triggered by the thalamus or sensory periphery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Basisproblem von Arc-Routing Problemen mit mehreren Fahrzeugen ist das Capacitated Arc-Routing Problem (CARP). Praktische Anwendungen des CARP sind z.B. in den Bereichen Müllabfuhr und Briefzustellung zu finden. Das Ziel ist es, einen kostenminimalen Tourenplan zu berechnen, bei dem alle erforderlichen Kanten bedient werden und gleichzeitig die Fahrzeugkapazität eingehalten wird. In der vorliegenden Arbeit wird ein Cut-First Branch-and-Price Second Verfahren entwickelt. In der ersten Phase werden Schnittebenen generiert, die dem Master Problem in der zweiten Phase hinzugefügt werden. Das Subproblem ist ein kürzeste Wege Problem mit Ressourcen und wird gelöst um neue Spalten für das Master Problem zu liefern. Ganzzahlige CARP Lösungen werden durch ein neues hierarchisches Branching-Schema garantiert. Umfassende Rechenstudien zeigen die Effektivität dieses Algorithmus. Kombinierte Standort- und Arc-Routing Probleme ermöglichen eine realistischere Modellierung von Zustellvarianten bei der Briefzustellung. In dieser Arbeit werden jeweils zwei mathematische Modelle für Park and Loop und Park and Loop with Curbline vorgestellt. Die Modelle für das jeweilige Problem unterscheiden sich darin, wie zulässige Transfer Routen modelliert werden. Während der erste Modelltyp Subtour-Eliminationsbedingungen verwendet, werden bei dem zweiten Modelltyp Flussvariablen und Flusserhaltungsbedingungen eingesetzt. Die Rechenstudie zeigt, dass ein MIP-Solver den zweiten Modelltyp oft in kürzerer Rechenzeit lösen kann oder bei Erreichen des Zeitlimits bessere Zielfunktionswerte liefert.