32 resultados para Collinear factorization
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this thesis, a systematic analysis of the bar B to X_sgamma photon spectrum in the endpoint region is presented. The endpoint region refers to a kinematic configuration of the final state, in which the photon has a large energy m_b-2E_gamma = O(Lambda_QCD), while the jet has a large energy but small invariant mass. Using methods of soft-collinear effective theory and heavy-quark effective theory, it is shown that the spectrum can be factorized into hard, jet, and soft functions, each encoding the dynamics at a certain scale. The relevant scales in the endpoint region are the heavy-quark mass m_b, the hadronic energy scale Lambda_QCD and an intermediate scale sqrt{Lambda_QCD m_b} associated with the invariant mass of the jet. It is found that the factorization formula contains two different types of contributions, distinguishable by the space-time structure of the underlying diagrams. On the one hand, there are the direct photon contributions which correspond to diagrams with the photon emitted directly from the weak vertex. The resolved photon contributions on the other hand arise at O(1/m_b) whenever the photon couples to light partons. In this work, these contributions will be explicitly defined in terms of convolutions of jet functions with subleading shape functions. While the direct photon contributions can be expressed in terms of a local operator product expansion, when the photon spectrum is integrated over a range larger than the endpoint region, the resolved photon contributions always remain non-local. Thus, they are responsible for a non-perturbative uncertainty on the partonic predictions. In this thesis, the effect of these uncertainties is estimated in two different phenomenological contexts. First, the hadronic uncertainties in the bar B to X_sgamma branching fraction, defined with a cut E_gamma > 1.6 GeV are discussed. It is found, that the resolved photon contributions give rise to an irreducible theory uncertainty of approximately 5 %. As a second application of the formalism, the influence of the long-distance effects on the direct CP asymmetry will be considered. It will be shown that these effects are dominant in the Standard Model and that a range of -0.6 < A_CP^SM < 2.8 % is possible for the asymmetry, if resolved photon contributions are taken into account.
Resumo:
Kernmomente und Kernladungsradien von kurzlebigen NeonIsotopen in der Kette 17-26,28Ne wurden mittels kollinearerLaserspektroskopie am online Massenseparator ISOLDE am CERN(Genf) vermessen. Bei kollinearer Laserspektroskopieverlangt die Bestimmung der Kernladungsradien leichterIsotope aus der Isotopeverschiebung nach einer sehr präzisenKenntnis der Ionenstrahlenergie. Zu diesem Zweck wurde eineneue, auf kollinearer Laserspektroskopie basierende Methodezur Strahlenergiemessung entwickelt und erfolgreich in denExperimenten zu Neon eingesetzt. Die experimentellenErgebnisse werden mit theoretischen Rechnungen im Rahmen desSchalenmodells und von kollektiven Kernmodellen verglichen.
Resumo:
The present state of the theoretical predictions for the hadronic heavy hadron production is not quite satisfactory. The full next-to-leading order (NLO) ${cal O} (alpha_s^3)$ corrections to the hadroproduction of heavy quarks have raised the leading order (LO) ${cal O} (alpha_s^2)$ estimates but the NLO predictions are still slightly below the experimental numbers. Moreover, the theoretical NLO predictions suffer from the usual large uncertainty resulting from the freedom in the choice of renormalization and factorization scales of perturbative QCD.In this light there are hopes that a next-to-next-to-leading order (NNLO) ${cal O} (alpha_s^4)$ calculation will bring theoretical predictions even closer to the experimental data. Also, the dependence on the factorization and renormalization scales of the physical process is expected to be greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore make the comparison between theory and experiment much more significant. In this thesis I have concentrated on that part of NNLO corrections for hadronic heavy quark production where one-loop integrals contribute in the form of a loop-by-loop product. In the first part of the thesis I use dimensional regularization to calculate the ${cal O}(ep^2)$ expansion of scalar one-loop one-, two-, three- and four-point integrals. The Laurent series of the scalar integrals is needed as an input for the calculation of the one-loop matrix elements for the loop-by-loop contributions. Since each factor of the loop-by-loop product has negative powers of the dimensional regularization parameter $ep$ up to ${cal O}(ep^{-2})$, the Laurent series of the scalar integrals has to be calculated up to ${cal O}(ep^2)$. The negative powers of $ep$ are a consequence of ultraviolet and infrared/collinear (or mass ) divergences. Among the scalar integrals the four-point integrals are the most complicated. The ${cal O}(ep^2)$ expansion of the three- and four-point integrals contains in general classical polylogarithms up to ${rm Li}_4$ and $L$-functions related to multiple polylogarithms of maximal weight and depth four. All results for the scalar integrals are also available in electronic form. In the second part of the thesis I discuss the properties of the classical polylogarithms. I present the algorithms which allow one to reduce the number of the polylogarithms in an expression. I derive identities for the $L$-functions which have been intensively used in order to reduce the length of the final results for the scalar integrals. I also discuss the properties of multiple polylogarithms. I derive identities to express the $L$-functions in terms of multiple polylogarithms. In the third part I investigate the numerical efficiency of the results for the scalar integrals. The dependence of the evaluation time on the relative error is discussed. In the forth part of the thesis I present the larger part of the ${cal O}(ep^2)$ results on one-loop matrix elements in heavy flavor hadroproduction containing the full spin information. The ${cal O}(ep^2)$ terms arise as a combination of the ${cal O}(ep^2)$ results for the scalar integrals, the spin algebra and the Passarino-Veltman decomposition. The one-loop matrix elements will be needed as input in the determination of the loop-by-loop part of NNLO for the hadronic heavy flavor production.
Resumo:
In this work, we consider a simple model problem for the electromagnetic exploration of small perfectly conducting objects buried within the lower halfspace of an unbounded two–layered background medium. In possible applications, such as, e.g., humanitarian demining, the two layers would correspond to air and soil. Moving a set of electric devices parallel to the surface of ground to generate a time–harmonic field, the induced field is measured within the same devices. The goal is to retrieve information about buried scatterers from these data. In mathematical terms, we are concerned with the analysis and numerical solution of the inverse scattering problem to reconstruct the number and the positions of a collection of finitely many small perfectly conducting scatterers buried within the lower halfspace of an unbounded two–layered background medium from near field measurements of time–harmonic electromagnetic waves. For this purpose, we first study the corresponding direct scattering problem in detail and derive an asymptotic expansion of the scattered field as the size of the scatterers tends to zero. Then, we use this expansion to justify a noniterative MUSIC–type reconstruction method for the solution of the inverse scattering problem. We propose a numerical implementation of this reconstruction method and provide a series of numerical experiments.
Resumo:
The Factorization Method localizes inclusions inside a body from measurements on its surface. Without a priori knowing the physical parameters inside the inclusions, the points belonging to them can be characterized using the range of an auxiliary operator. The method relies on a range characterization that relates the range of the auxiliary operator to the measurements and is only known for very particular applications. In this work we develop a general framework for the method by considering symmetric and coercive operators between abstract Hilbert spaces. We show that the important range characterization holds if the difference between the inclusions and the background medium satisfies a coerciveness condition which can immediately be translated into a condition on the coefficients of a given real elliptic problem. We demonstrate how several known applications of the Factorization Method are covered by our general results and deduce the range characterization for a new example in linear elasticity.
Resumo:
In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.
Resumo:
In electrical impedance tomography, one tries to recover the conductivity inside a physical body from boundary measurements of current and voltage. In many practically important situations, the investigated object has known background conductivity but it is contaminated by inhomogeneities. The factorization method of Andreas Kirsch provides a tool for locating such inclusions. Earlier, it has been shown that under suitable regularity conditions positive (or negative) inhomogeneities can be characterized by the factorization technique if the conductivity or one of its higher normal derivatives jumps on the boundaries of the inclusions. In this work, we use a monotonicity argument to generalize these results: We show that the factorization method provides a characterization of an open inclusion (modulo its boundary) if each point inside the inhomogeneity has an open neighbourhood where the perturbation of the conductivity is strictly positive (or negative) definite. In particular, we do not assume any regularity of the inclusion boundary or set any conditions on the behaviour of the perturbed conductivity at the inclusion boundary. Our theoretical findings are verified by two-dimensional numerical experiments.
Resumo:
Collinear laser spectroscopy has been used as a tool for nuclear physics for more than 30 years. The unique possibility to extract nuclear properties like spins, radii and nuclear moments in a model-independent manner leads to important physics results to test the predictive power of existing nuclear models. rnThis work presents the construction and the commissioning of a new collinear laser spectroscopy experiment TRIGA-LASER as a part of the TRIGA-SPEC facility at the TRIGA research reactor at the University of Mainz. The goal of the experiment is to study the nuclear structure of radioactive isotopes which will be produced by neutron-induced fission near the reactor core and transported to an ion source by a gas jet system. rnThe versatility of the collinear laser spectroscopy technique will be exploited in the second part of this thesis. The nuclear spin and the magnetic moment of the neutron-deficient isotope Mg-21 will be presented, which were measured by the detection of the beta-decay asymmetry induced by nuclear polarization after optical pumping. A combination of this detection method with the classical fluorescence detection is then used to determine the isotope shifts of the neutron-rich magnesium isotopes from Mg-24 through Mg-32 to study the transition to the ''island of inversion''.
Resumo:
Die kollineare Laserspektroskopie hat sich in den vergangenen drei Jahrzehnten zur Bestimmung der Kernladungsradien mittelschwerer und schwerer kurzlebiger Atomkerne in ausgezeichneter Weise bewährt. Auf die Isotope sehr leichter Elemente konnte sie allerdings erst kürzlich erweitert werden. Dieser Bereich der Nuklidkarte ist von besonderem Interesse, denn die ersten ab-initio Modelle der Kernphysik, die den Aufbau eines Atomkerns basierend auf individuellen Nukleonen und realistischenWechselwirkungspotentialen beschreiben, sind gegenwärtig nur für die leichtesten Elemente anwendbar. Außerdem existiertrnin dieser Region eine besonders exotische Form von Atomkernen, die sogenanntenrnHalokerne. Die Isotopenkette der Berylliumisotope zeichnet sich durch das Auftreten des Ein-Neutronen Halokerns 11Be und des Zwei- oder Vier-Neutronen-Halos 14Be aus. Dem Isotop 12Be kommt durch seine Position zwischen diesen beiden Exoten und den im Schalenmodell erwarteten magischen Schalenabschluss N = 8 eine besondere Bedeutung zu.rnIm Rahmen dieser Arbeit wurden mehrere frequenzstabilisierte Lasersysteme für die kollineare Laserspektroskopie aufgebaut. An TRIGA-SPEC stehen nun unter anderem ein frequenzverdoppeltes Diodenlasersystem mit Trapezverstärker und frequenzkammstabilisierter Titan-Saphirlaser mit Frequenzverdopplungsstufe für die Spektroskopie an refraktären Elementen oberhalb von Molybdän zur Verfügung, die für erste Testexperimente eingesetzt wurden. Außerdem wurde die effiziente Frequenzvervierfachung eines Titan-Saphirlasers demonstriert. An ISOLDE/CERN wurde ein frequenzkammstabilisierter und ein jodstabilisierter Farbstofflaser installiert und für die Laserspektroskopie an 9,10,11,12Be eingesetzt. Durch das verbesserte Lasersystem und den Einsatz eines verzögerten Koinzidenznachweises für Photonen und Ionen gelang es die Empfindlichkeitrnder Berylliumspektroskopie um mehr als zwei Größenordnungen zu steigern und damit die früheren Messungen an 7−11Be erstmals auf das Isotop 12Be auszuweiten. Außerdem wurde die Genauigkeit der absoluten Übergangsfrequenzen und der Isotopieverschiebungen der Isotope 9,10,11Be signifikant verbessert.rnDurch den Vergleich mit Ergebnissen des Fermionic Molecular Dynamics Modells kann der Trend der Ladungsradien der leichteren Isotope durch die ausgeprägte Clusterstruktur der Berylliumkerne erklärt werden. Für 12Be wird ersichtlich, dass der Grundzustand durch eine (sd)2 Konfiguration statt der vom Schalenmodell erwarteten p2 Konfiguration dominiert wird. Dies ist ein klares Indiz für das bereits zuvor beobachtete Verschwinden des N = 8 Schalenabschlusses bei 12Be.
Resumo:
In this thesis we investigate the phenomenology of supersymmetric particles at hadron colliders beyond next-to-leading order (NLO) in perturbation theory. We discuss the foundations of Soft-Collinear Effective Theory (SCET) and, in particular, we explicitly construct the SCET Lagrangian for QCD. As an example, we discuss factorization and resummation for the Drell-Yan process in SCET. We use techniques from SCET to improve existing calculations of the production cross sections for slepton-pair production and top-squark-pair production at hadron colliders. As a first application, we implement soft-gluon resummation at next-to-next-to-next-to-leading logarithmic order (NNNLL) for slepton-pair production in the minimal supersymmetric extension of the Standard Model (MSSM). This approach resums large logarithmic corrections arising from the dynamical enhancement of the partonic threshold region caused by steeply falling parton luminosities. We evaluate the resummed invariant-mass distribution and total cross section for slepton-pair production at the Tevatron and LHC and we match these results, in the threshold region, onto NLO fixed-order calculations. As a second application we present the most precise predictions available for top-squark-pair production total cross sections at the LHC. These results are based on approximate NNLO formulas in fixed-order perturbation theory, which completely determine the coefficients multiplying the singular plus distributions. The analysis of the threshold region is carried out in pair invariant mass (PIM) kinematics and in single-particle inclusive (1PI) kinematics. We then match our results in the threshold region onto the exact fixed-order NLO results and perform a detailed numerical analysis of the total cross section.
Resumo:
In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Inhomogenitäten der Leitfähigkeit in der elektrischen Impedanztomographie auf unbeschränkten Gebieten - speziell der Halbebene bzw. dem Halbraum - untersucht. Als Lösungsräume für das direkte Problem, d.h. die Bestimmung des elektrischen Potentials zu vorgegebener Leitfähigkeit und zu vorgegebenem Randstrom, führen wir gewichtete Sobolev-Räume ein. In diesen wird die Existenz von schwachen Lösungen des direkten Problems gezeigt und die Gültigkeit einer Integraldarstellung für die Lösung der Laplace-Gleichung, die man bei homogener Leitfähigkeit erhält, bewiesen. Mittels der Faktorisierungsmethode geben wir eine explizite Charakterisierung von Einschlüssen an, die gegenüber dem Hintergrund eine sprunghaft erhöhte oder erniedrigte Leitfähigkeit haben. Damit ist zugleich für diese Klasse von Leitfähigkeiten die eindeutige Rekonstruierbarkeit der Einschlüsse bei Kenntnis der lokalen Neumann-Dirichlet-Abbildung gezeigt. Die mittels der Faktorisierungsmethode erhaltene Charakterisierung der Einschlüsse haben wir in ein numerisches Verfahren umgesetzt und sowohl im zwei- als auch im dreidimensionalen Fall mit simulierten, teilweise gestörten Daten getestet. Im Gegensatz zu anderen bekannten Rekonstruktionsverfahren benötigt das hier vorgestellte keine Vorabinformation über Anzahl und Form der Einschlüsse und hat als nicht-iteratives Verfahren einen vergleichsweise geringen Rechenaufwand.
Resumo:
In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Gebieten mit sprunghaft abweichenden Materialparametern untersucht. Durch eine abstrakte Formulierung beweisen wir die der Methode zugrunde liegende Bildraumidentität für allgemeine reelle elliptische Probleme und deduzieren bereits bekannte und neue Anwendungen der Methode. Für das spezielle Problem, magnetische oder perfekt elektrisch leitende Objekte durch niederfrequente elektromagnetische Strahlung zu lokalisieren, zeigen wir die eindeutige Lösbarkeit des direkten Problems für hinreichend kleine Frequenzen und die Konvergenz der Lösungen gegen die der elliptischen Gleichungen der Magnetostatik. Durch Anwendung unseres allgemeinen Resultats erhalten wir die eindeutige Rekonstruierbarkeit der gesuchten Objekte aus elektromagnetischen Messungen und einen numerischen Algorithmus zur Lokalisierung der Objekte. An einem Musterproblem untersuchen wir, wie durch parabolische Differentialgleichungen beschriebene Einschlüsse in einem durch elliptische Differentialgleichungen beschriebenen Gebiet rekonstruiert werden können. Dabei beweisen wir die eindeutige Lösbarkeit des zugrunde liegenden parabolisch-elliptischen direkten Problems und erhalten durch eine Erweiterung der Faktorisierungsmethode die eindeutige Rekonstruierbarkeit der Einschlüsse sowie einen numerischen Algorithmus zur praktischen Umsetzung der Methode.
Resumo:
Studies in regions of the nuclear chart in which the model predictions of properties of nuclei fail can bring a better understanding of the strong interaction in the nuclear medium. To such regions belongs the so called "island of inversion" centered around Ne, Na and Mg isotopes with 20 neutrons in which unexpected ground-state spins, large deformations and dense low-energy spectra appear. This is a strong argument that the magic N = 20 is not a closed shell in this area. In this thesis investigations of isotope shifts of stable 24,25,26Mg, as well as spins and magnetic moments of short-lived 29,31Mg are presented. The successful studies were performed at the ISOLDE facility at CERN using collinear laser and beta-NMR spectroscopy techniques. The isotopes were investigated as single-charged ions in the 280-nm transition from the atomic ground state 2S1/2 to one of the two lowest excited states 2P1/2,3/2 using continuous wave laser beams. The isotope-shift measurements with fluorescence detection for the three stable isotopes show that it is feasible to perform the same studies on radioactive Mg isotopes up to the "island of inversion". This will allow to determine differences in the mean charge square radii and interpret them in terms of deformation. The high detection efficiency for beta particles and optical pumping close to saturation allowed to obtain very good beta-asymmetry signals for 29Mg and 31Mg with half-lives around 1 s and production yields about 10^5 ions/s. For this purpose the ions were implanted into a host crystal lattice. Such detection of the atomic resonances revealed their hyperfine structure, which gives the sign and a first estimate of the value of the magnetic moment. The nuclear magnetic resonance gave also their g-factors with the relative uncertainty smaller than 0.2 %. By combining the two techniques also the nuclear spin of both isotopes could be unambiguously determined. The measured spins and g-factors show that 29Mg with 17 neutrons lies outside the "island of inversion". On the other hand, 31Mg with 19 neutrons has an unexpected ground-state spin which can be explained only by promoting at least two neutrons across the N = 20 shell gap. This places the above nucleus inside the "island". However, modern shell-model approaches cannot predict this level as the ground state but only as one of the low-lying states, even though they reproduce very well the experimental g-factor. This indicates that modifications to the available interactions are required. Future measurements include isotope shift measurements on radioactive Mg isotopes and beta-NMR studies on 33Mg.
Resumo:
In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L-infinity-conductivities (with positive infima) in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderon problem with partial data. We also show how to construct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical impedance tomography.
Resumo:
For the detection of hidden objects by low-frequency electromagnetic imaging the Linear Sampling Method works remarkably well despite the fact that the rigorous mathematical justification is still incomplete. In this work, we give an explanation for this good performance by showing that in the low-frequency limit the measurement operator fulfills the assumptions for the fully justified variant of the Linear Sampling Method, the so-called Factorization Method. We also show how the method has to be modified in the physically relevant case of electromagnetic imaging with divergence-free currents. We present numerical results to illustrate our findings, and to show that similar performance can be expected for the case of conducting objects and layered backgrounds.