2 resultados para COOPERATIVE OPTICAL TRANSITIONS

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis mainly two alternating indenofluorene-phenanthrene copolymers were investigated with a variety of spectroscopic and optoelectronic experiments. The different experimental techniques allowed to retrieve deeper insights into their unique optical as well as optoelectronic properties. The motivation of the research presented in this work was to correlate their photophysical properties with respect to their application in electrically pumped lasing. This thesis begins with the description of optical properties studied by classical absorption and emission spectroscopy and successively describes an overall picture regarding their excited state dynamics occurring after photoexcitation studied by time-resolved spectroscopy. The different spectroscopic methods do not only allow to elucidate the different optical transitions occurring in this class of materials, but also contribute to a better understanding of exciton dynamics and exciton interaction with respect to the molecular structure as well as aggregation and photooxidation of the polymers. Furthermore, the stimulated emission properties were analyzed by amplified spontaneous emission (ASE) experiments. Especially one of the investigated materials, called BLUE-1, showed outstanding optical properties including a high optical gain, a low threshold for ASE and low optical losses. Apart from the optical experiments, the charge carrier mobility was measured with the time-of-flight technique and a comparably high hole mobility on the order of 1 x 10-² cm²/(Vs) was determined for BLUE-1 which makes this material promising for organic lasing. The impact of the high charge carrier mobility in this material class was further analyzed in different optoelectronic devices such as organic LEDs (OLEDs) and organic solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on the realization, characterization and analysis of ultracold bosonic and fermionic atoms in three-dimensional optical lattice potentials. Ultracold quantum gases in optical lattices can be regarded as ideal model systems to investigate quantum many-body physics. In this work interacting ensembles of bosonic 87Rb and fermionic 40K atoms are employed to study equilibrium phases and nonequilibrium dynamics. The investigations are enabled by a versatile experimental setup, whose core feature is a blue-detuned optical lattice that is combined with Feshbach resonances and a red-detuned dipole trap to allow for independent control of tunneling, interactions and external confinement. The Fermi-Hubbard model, which plays a central role in the theoretical description of strongly correlated electrons, is experimentally realized by loading interacting fermionic spin mixtures into the optical lattice. Using phase-contrast imaging the in-situ size of the atomic density distribution is measured, which allows to extract the global compressibility of the many-body state as a function of interaction and external confinement. Thereby, metallic and insulating phases are clearly identified. At strongly repulsive interaction, a vanishing compressibility and suppression of doubly occupied lattice sites signal the emergence of a fermionic Mott insulator. In a second series of experiments interaction effects in bosonic lattice quantum gases are analyzed. Typically, interactions between microscopic particles are described as two-body interactions. As such they are also contained in the single-band Bose-Hubbard model. However, our measurements demonstrate the presence of multi-body interactions that effectively emerge via virtual transitions of atoms to higher lattice bands. These findings are enabled by the development of a novel atom optical measurement technique: In quantum phase revival spectroscopy periodic collapse and revival dynamics of the bosonic matter wave field are induced. The frequencies of the dynamics are directly related to the on-site interaction energies of atomic Fock states and can be read out with high precision. The third part of this work deals with mixtures of bosons and fermions in optical lattices, in which the interspecies interactions are accurately controlled by means of a Feshbach resonance. Studies of the equilibrium phases show that the bosonic superfluid to Mott insulator transition is shifted towards lower lattice depths when bosons and fermions interact attractively. This observation is further analyzed by applying quantum phase revival spectroscopy to few-body systems consisting of a single fermion and a coherent bosonic field on individual lattice sites. In addition to the direct measurement of Bose-Fermi interaction energies, Bose-Bose interactions are proven to be modified by the presence of a fermion. This renormalization of bosonic interaction energies can explain the shift of the Mott insulator transition. The experiments of this thesis lay important foundations for future studies of quantum magnetism with fermionic spin mixtures as well as for the realization of complex quantum phases with Bose-Fermi mixtures. They furthermore point towards physics that reaches beyond the single-band Hubbard model.