3 resultados para 091006 Manufacturing Processes and Technologies (excl. Textiles)

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zusammenfassung Um zu einem besseren Verständnis des Prozesses der Biomineralisation zu gelangen, muss das Zusammenwirken der verschiedenen Typen biologischer Makromoleküle, die am Keimbildungs- und Wachstumsprozess der Minerale beteiligt sind, berücksichtigt werden. In dieser Arbeit wird ein neues Modellsystem eingeführt, das aus einem SAM (self-assembled monolayer) mit verschiedenen Funktionalitäten und unterschiedlichen, gelösten Makromolekülen besteht. Es konnte gezeigt werden, dass die Kristallisation von Vaterit (CaCO3) sowie Strontianit (SrCO3) Nanodrähten der Präsenz von Polyacrylat in Kooperation mit einer COOH-funktionalisierten SAM-Oberfläche zugeschrieben werden kann. Die Kombination bestehend aus einer polaren SAM-Oberfläche und Polyacrylat fungiert als Grenzfläche für die Struktur dirigierende Kristallisation von Nanodraht-Kristallen. Weiter konnte gezeigt werden, dass die Phasenselektion von CaCO3 durch die kooperative Wechselwirkung zwischen einer SAM-Oberfläche und einem daran adsorbierten hb-Polyglycerol kontrolliert wird. Auch die Funktionalität einer SAM-Oberfläche in Gegenwart von Carboxymethyl-cellulose übt einen entscheidenden Einfluss auf die Phasenselektion des entstehenden Produktes aus. In der vorliegenden Arbeit wurden Untersuchungen an CaCO3 zur homogenen Keimbildung, zur Nukleation in Gegenwart eines Proteins sowie auf Kolloiden, die als Template fungieren, mittels Kleinwinkel-Neutronenstreuung durchgeführt. Die homogene Kristallisation in wässriger Lösung stellte sich als ein mehrstufiger Prozess heraus. In Gegenwart des Eiweißproteins Ovalbumin konnten drei Phasen identifiziert werden, darunter eine anfänglich vorhandene amorphe sowie zwei kristalline Phasen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular imaging technologies as Positron Emission Tomography (PET) are playing a key role in drug discovery, development and delivery due to the possibility to quantify e.g. the binding potential in vivo, non-invasively and repetitively. In this context, it provides a significant advance in the understanding of many CNS disorders and conditions. The serotonergic receptor system is involved in a number of important physiological processes and diseases such as depression, schizophrenia, Alzheimer’s disease, sleep or sexual behaviour. Especially, the 5-HT2A and the 5-HT1A receptor subtypes are in the focus of fundamental and clinical research due to the fact that many psychotic drugs interact with these neuronal transmembrane receptors. This work describes the successful development, as well as in vitro and in vivo evaluation of 5-HT2A and 5-HT1A selective antagonistic PET-radiotracers. The major achievements obtained in this thesis are: 1. the development and in vitro evaluation of several 5-HT2A antagonistic compounds, namely MH.MZ (Ki = 9.0 nM), (R)-MH.MZ (Ki = 0.72 nM) and MA-1 (Ki = 3.0 nM). 2. the 18F-labeling procedure of these compounds and their optimization, whereby radiochemical yields > 35 % in high specific activities (> 15 GBq/µmol) could be observed. Synthesis time inclusive secondary synthon synthesis, the radioactive labeling procedure, separation and final formulation took no longer than 120 min and provided the tracer in high radiochemical purity. 3. the in vivo µPET evaluation of [18F]MH.MZ and (R)-[18F]MH.MZ resulting in promising imaging agents of the 5-HT2A receptor status; from which (R)-[18F]MH.MZ seems to be the most promising ligand. 4. the determination of the influence of P-gp on the brain biodistribution of [18F]MH.MZ showing a strong P-gp dependency but no regional alteration. 5. the four-step radiosynthesis and evaluation of [18F]MDL 100907 resulting in another high affine tracer, which is, however, limited due to its low radiochemical yield. 6. the development and evaluation of 3 novel possible 5-HT2A imaging agents combining structural elements of altanserin, MDL 100907 and SR 46349B demonstrating different binding modes of these compounds. 7. the development, the labeling and in vitro evaluation of the novel 5-HT1A antagonistic tracer [18F]AH1.MZ (Ki = 4.2 nM).