25 resultados para labelling
Resumo:
ZusammenfassungrnrnrnZwei 18F-markierte Derivate des Aromataseinhibitors Letrozol 5, [18F]FML 17 und [18F]FEL 18, sowie die benötigten Markierungsvorläufer sollten im Rahmen dieser Arbeit hergestellt werden. Die Referenzverbindungen [19F]FML 17 und [19F]FEL 18 wurden synthetisiert und bei Novartis bereits auf ihre in vitro Eigenschaften untersucht. Nach erfolgreicher Radiomarkierung der beiden Derivate sollten erste in vitro und in vivo Untersuchungen mit den radiomarkierten Verbindungen durchgeführt werden. Zusätzlich zu diesen beiden Derivaten wurde ein drittes radiofluoriertes Letrozolderivat, [18F]FPL 19, und der entsprechende Markierungsvorläufer synthetisiert.rnrnZur Direktmarkierung von [18F]FML 17 mit [18F]Fluorid wurden drei Markierungsvorläufer mit verschiedenen Abgangsgruppen (TosMV-FML 7, MesMV-FML 8 and BrMV-FML 20) in 68 %, 66 % und 30 % Ausbeute hergestellt. Die Radiomarkierung von TosMV-FML 7 lieferte [18F]FML 17 in max. 30 % Ausbeute. Die Markierungsausbeuten waren unstabil und nicht reproduzierbar. Versuche, die Markierungsausbeuten durch Variation von Reaktionsparametern wie Temperatur, Lösungsmittel und Basensystem zu optimieren und zu stabilisiern, blieben erfolglos. Die Radiomarkierungsversuche der beiden anderen Markierungsvorläufer, MesMV-FML 8 und BrMV-FML 20, ergaben ebenfalls nicht das gewünschte Produkt [18F]FML 17.rnrnUm radiofluoriertes [18F]FEL 18 zu erhalten, wurden zwei Strategien untersucht. Ein Ansatz ist eine 18F-Direktmarkierung geeigneter Markierungsvorläufer, die andere Strategie eine 18F Fluoralkylierung von Letrozol 5 mit prosthetischen Gruppen wie 2-[18F]Fluorethyltosylat ([18F]FETos) oder 1-Brom-2-[18F]fluorethan ([18F]BFE). Im letzten Schritt der Synthese der Direktmarkierungsvorläufer konnten die benötigten Markierungsvorläufer nicht isoliert werden. Stattdessen wurde die Bildung von Nebenprodukten beobachtet. Die Radiomarkierung von Letrozol 5 mit [18F]FETos oder [18F]BFE ergab kein [18F]FEL 18. Im Verlauf der Radiomarkierung wurde die Bildung eines nicht radioaktiven Nebenproduktes beobachtet. Die Verwendung von Iodid-Salzen zur in situ-Bildung von 1-[18F]Fluor-2-iodethan, eines noch reaktiveren Fluoralkylierungsagens, konnte das Ergebnis der Radiomarkierungsreaktionen nicht verbessern.rnrnDie Synthese des dritten Letrozolderivates, [18F]FPL 19, verlief erfolgreich. Der benötigte Markierungsvorläufer zur Direktmarkierung mit 18F, TosMV-FPL 16, konnte in 59 % Ausbeute hergestellt werden. Das Einfügen einer dritten Methylengruppe zwischen dem Letrozolrest und dem radioaktiven Label führte zu stabilen, reproduzierbaren radiochemischen Ausbeuten zwischen 30 % und 45 %.rnrnDa die radiochemischen Ausbeuten der 18F-Direktmarkierung des TosMV-FML 7 zur Herstellung von [18F]FML 17 nicht stabilisiert werden konnten, wurden keine weitereführenden in vitro oder in vivo Untersuchungen vorgenommen. Die radiomarkierte Verbindung [18F]FEL 18 konnte über keine der beiden Markierungsstrategien synthetisiert werden. Daher konnten keine in vitro oder in vivo Experimente durchgeführt werden. Die erfolgreiche Radiomarkierung des neuen dritten Letrozolderivates, [18F]FPL 19, macht nun weitere in vitro und in vivo Testungen der 19F Referenzverbindung und des 18F-Analogs erforderlich. Ähnliche Eigenschaften wie für die beiden bereits evaluierten Verbindungen, FML 17 and FEL 18, können erwartet werden.rnrnDiese Arbeit entstand im Rahmen einer Kooperation zwischen der Novartis International AG, Basel und der Johannes Gutenberg-Universität Mainz.rnrn
Resumo:
Glutamat ist der wichtigste exzitatorische Neurotransmitter im Gehirn. Folglich spielen Glutamat-kontrollierte Rezeptorsysteme eine entscheidende Rolle in neurologischen Vorgängen, wie beispielsweise in Lern- und Gedächtnisprozessen. Gerade der NMDA-Rezeptor ist in eine Vielzahl solcher Vorgänge involviert und wird vor allem mit neurodegenerativen Erkrankungen wie Chorea Huntington, Morbus Alzheimer, Morbus Parkinson und zerebraler Ischämie in Verbindung gebracht. Folglich stellt die Visualisierung des NMDA-Rezeptorstatus eine Möglichkeit dar, den Verlauf solcher Prozesse zu untersuchen.rnDie Positronen-Emissions-Tomographie (PET) ist eine leistungsstarke Anwendung in der molekularen Bildgebung und erlaubt die in vivo-Visualisierung sowie Quantifizierung biochemischer Prozesse. Durch die Verwendung geeigneter Tracer können bestimmte pathologische und neurologische Abläufe beurteilt werden. rnZurzeit sind keine geeigneten PET-Tracer zur Untersuchung des NMDA-Rezeptors verfügbar. Bisher dargestellte PET-Liganden zeichneten sich durch nicht zufriedenstellende Affinitäten und Selektivitäten aus und führten meist auf Grund der hohen Lipophilie zu einem hohen Maß an unspezifischer Bindung. rnDie Strychnin-insensitive Glycinbindungsstelle des NMDA-Rezeptors stellt ein vielversprechendes Target dar, spezifische Liganden für diese Bindungsstelle zu synthetisieren. Hier zeichnen sich einige Verbindungsklassen durch exzellente Affinitäten und Selektivitäten sowie durch vielversprechende in vivo-Eigenschaften aus. rnAuf Grundlage dieser biologischen Daten wurden zwei Substanzen der 2-Indolcarbonsäure, nämlich die 4,6-Dichlor-3-(2-oxo-3-phenylimidazolidin-1-ylmethyl)-1H-indol-2-carbonsäure (MDJ-114) und die (E)-4,6-Dichlor-3-(2-phenylcarbamoylvinyl)-1H-indol-2-carbonsäure (GV150526), als Leitstruktur gewählt. Ferner wurde das 7-Chlor-4-hydroxy-3-(3-phenoxyphenyl)-1H-chinolin-2-on (L-701,324) aus der Substanzklasse der 4-Hydroxy-1H-chinolin-2-one als dritte Leitstruktur gewählt.rnFür diese Substanzen wurden 19F-markierte Analogverbindungen synthetisiert, um als inaktive Referenzverbindungen auf ihre Eignung überprüft zu werden. Hierzu wurde eine Fluorethoxygruppierung im terminalen Phenylring der entsprechenden Leitstruktur eingeführt. Durch Variation der Fluorethoxysubstitution in ortho-, meta- und para-Stellung, konnten die besten Affinitäten in einem kompetitiven Rezeptorbindungsassay durch Verdrängung von [3H]MDL-105,519 bestimmt werden. Als Maß für die Lipophilie wurden die entsprechenden log D-Werte über die HPLC-Methode bestimmt. Basierend auf den Ergebnissen der Evaluierung wurden zwei Derivate identifiziert, welche zur 18F-Markierung genutzt werden sollten (GV150526-Derivat 34: log D = 0,23 ± 0,03, IC50 = 0,20 ± 0,25 µM, Ki = 0,13 ± 0,16 µM; L701,324-Derivat 55: log D = - 0,25 ± 0,01, IC50 = 78 ± 37 µM, Ki = 51 ± 24 µM). Die 18F-Markierung erfolgte durch die Reaktion des entsprechenden Markierungsvorläufers mit dem Markierungssynthon 2-[18F]Fluorethyltosylat, welches durch die Umsetzung von Ethylenditosylat mit [18F]Fluorid hergestellt wurde. Die Radiosynthesen der beiden 18F-markierten Verbindungen [18F]34 (4,6-Dichlor-3-{2-[4-(2-[18F]fluorethoxy)-phenylcarbamoyl]-vinyl}-1H-indol-2-carbonsäure) und [18F]55 (7-Chlor-3-{3-[4-(2-[18F]fluorethoxy)-phenoxy]-phenyl}-4-hydroxy-1H-chinolin-2-on) wurden optimiert sowie semipräparative Abtrennverfahren entwickelt. Beide Tracer wurden auf ihre in vivo-Eignung im µPET-Experiment untersucht. Die Zeitaktivitätskurven lassen erkennen, dass beide Tracer entgegen der Erwartung nicht die Blut-Hirn-Schranke überwinden können. Für das GV150526-Derivat ([18F]34) wurden zusätzlich Autoradiographiestudien durchgeführt. Die erhaltenen Aufnahmen zeigten ein heterogenes Verteilungsmuster der Aktivitätsanreicherung. Ebenso wurde ein hohes Maß an unspezifischer Bindung beobachtet. Möglicherweise sind Cross-Affinitäten zu anderen Rezeptorsystemen oder der recht hohe lipophile Rest des Moleküls hierfür verantwortlich. Ein Grund für die unzureichende Hirngängigkeit der Radioliganden kann sich in der Carboxylatfunktion des GV150526-Derivats bzw. in der 4-Hydroxy-1H-chinolin-2-on-Einheit des L-701,324-Derivats wiederspiegeln. rnAuf Grundlage dieser Resultate können Versuche unternommen werden, für die Verbindungsklasse der 2-Indolcarbonsäuren entsprechende Ester als Prodrugs mit einer verbesserten Bioverfügbarkeit darzustellen. Ebenso können neue Strukturen als Grundlage für neue PET-Tracer untersucht werden.rnrn
Resumo:
Der Lichtsammelkomplex II (LHCII) höherer Pflanzen ist eines der häufigsten Membranproteine der Welt. Er bindet 14 Chlorophylle und 4 Carotinoide nicht kovalent und fungiert in vivo als Lichtantenne des Photosystems II. Eine optimale Absorption von Licht ist auch bei Solarzellen entscheidend und es liegt nahe hier dasselbe Prinzip zu verwenden. Dafür bietet sich der Einsatz biologischer Komponenten wie des LHCII an. Dieser wurde evolutionär für eine effektive Absorption und Weiterleitung von Sonnenenergie optimiert. Zusätzlich lässt er sich in vitro in rekombinanter Form rekonstituieren. Für eine eventuelle Nutzung des LHCII in technologischen Anwendungen bedarf es der Interaktion mit anderen, vorzugsweise synthetischen Komponenten. Daher wurde die Bindung und der Energietransfer zwischen dem LHCII und organischen Fluoreszenzfarbstoffen sowie anorganischen „Quantum dots“ (QDs) untersucht. rnMit Donorfarbstoffen wurde die Grünlücke des LHCII funktionell geschlossen. Dafür wurden bis zu vier Fluoreszenzfarbstoffe kovalent an den LHCII gebunden. Diese Interaktion erfolgte sowohl mit Maleimiden an Cysteinen als auch mit N-Hydroxysuccinimidylestern an Lysinen. Die Assemblierung, Struktur und Funktion des Pigment-Protein-Komplexes wurde durch die Fluoreszenzfarbstoffe nicht gestört.rnAuf der Suche nach einem Farbstoff, der als Akzeptor die vom LHCII aufgenommene Energie übernimmt und durch Elektronenabgabe in elektrische Energie umwandelt, wurden drei Rylenfarbstoffe, ein Quaterrylen und zwei Terrylene, untersucht. Der LHCII konnte mit allen Farbstoffen erfolgreich markiert werden. Für die Nutzung der Hybridkomplexe ergaben sich allerdings Probleme. Das Quaterrylen beeinträchtigte aufgrund seiner Hydrophobizität die Rekonstitution des Proteins, während bei beiden Terrylenen der Energietransfer ineffizient war.rn Zusätzlich zu den Standard-Verknüpfungen zwischen Farbstoffen und Proteinen wurde in dieser Arbeit die „native chemische Ligation“ etabliert. Hierfür wurde eine LHCII-Mutante mit N-terminalem Cystein hergestellt, markiert und rekonstituiert. Messdaten an diesem Hybridkomplex ließen auf einen Energietransfer zwischen Farbstoff und Protein schließen. rnIn Hybridkomplexen sollen langfristig zur Ladungstrennung fähige Typ II-QDs Anwendung finden, wobei der LHCII als Lichtantenne dienen soll. Bis diese QDs verwendet werden können, wurden grundlegende Fragen der Interaktion beider Materialen an Typ I-QDs mit Energietransfer zum LHCII untersucht. Dabei zeigte sich, dass QDs in wässriger Lösung schnell aggregieren und entsprechende Kontrollen wichtig sind. Weiterführend konnte anhand der Trennung von ungebundenem und QD-gebundenem LHCII die Bindung von LHCII an QDs bestätigt werden. Dabei wurden Unterschiede in der Bindungseffizienz in Abhängigkeit der verwendeten LHCII und QDs festgestellt. Durch Herstellung von Fusionsproteinen aus LHCII und Affinitätspeptiden konnte die Bindung optimiert werden. Ein Energietransfer von QDs zu LHCII war nicht sicher nachzuweisen, da in den Hybridkomplexen zwar die QD- (Donor-) Fluoreszenz gelöscht, aber die LHCII- (Akzeptor-) Fluoreszenz nicht entsprechend stimuliert wurde.rnZusammenfassend wurden in dieser Arbeit einige Hybridkomplexe hergestellt, die in weiterführenden Ansätzen Verwendung finden können. Auf die hier gewonnenen Erkenntnisse über Interaktionen zwischen LHCII und synthetischen Materialien kann jetzt weiter aufgebaut werden.
Resumo:
In green plants, the function of collecting solar energy for photosynthesis is fulfilled by a series of light-harvesting complexes (LHC). The light-harvesting chlorophyll a/b protein (LHCP) is synthesized in the cytosol as a precursor (pLHCP), then imported into chloroplasts and assembled into photosynthetic thylakoid membranes. Knowledge about the regulation of the transport processes of LHCP is rather limited. Closely mimicking the in vivo situation, cell-free protein expression system is employed in this dissertation to study the reconstitution of LHCP into artificial membranes. The approach starts merely from the genetic information of the protein, so the difficult and time-consuming procedures of protein expression and purification can be avoided. The LHCP encoding gene from Pisum sativum was cloned into a cell-free compatible vector system and the protein was expressed in wheat germ extracts. Vesicles or pigment-containing vesicles were prepared with either synthetic lipid or purified plant leaf lipid to mimic cell membranes. LHCP was synthesized in wheat germ extract systems with or without supplemented lipids. The addition of either synthetic or purified plant leaf lipid was found to be beneficial to the general productivity of the expression system. The lipid membrane insertion of the LHCP was investigated by radioactive labelling, protease digestion, and centrifugation assays. The LHCP is partially protected against protease digestion; however the protection is independent from the supplemented lipids.
Resumo:
Membranproteine spielen eine wichtige Rolle bei physiologischen Prozessen wie Signalweiterleitung oder Immunreaktion. Deshalb stehen sie im Fokus der pharmakologischen Wirkstoffentwicklung und es besteht großes Interesse, Membranproteinbasierte Biosensoren zu entwickeln, die sich z.B. als Screening-Plattformen eignen. Allerdings stellt die Handhabung von Membranproteinen wegen ihrer amphiphilen Struktur eine große Herausforderung dar. Membranproteine werden meist in Zellkultur oder in bakteriellen Expressionssystemen synthetisiert. Diese Verfahren liefern aber oft nur eine geringe Ausbeute und erlauben wenig Kontrolle über die Expressionsbedingungen. Als alternativer Ansatz bietet sich stattdessen die in vitro Synthese von Proteinen an, die in einer zellfreien Umgebung stattfindet. Ziel der vorliegenden Arbeit war die Etablierung eines miniaturisierten Analysesystems, das Aktivitätsmessungen an in vitro synthetisierten Ionenkanälen erlaubt. Dafür wurde ein Labon- Chip entwickelt, der elektrochemische und optische Nachweismethoden in parallelen Anätzen ermöglicht. Als amphiphile Umgebung für die Inkorporation von Membranproteinen wurden vier verschieden biomimetische Membranaufbauten hinsichtlich ihrer Dichtigkeit und ihrer Reproduzierbarkeit untersucht. Als Methode fanden insbesondere die Impedanzspektroskpie und die Oberflächenplasmonen-Resonanzspektroskopie Anwendung. Die peptide cushioned Bilyer Lipid Membranes (pcBLM) eignete sich dabei am besten für Untersuchungen an Membranproteinen. Zur Detektion der Ionenkanalaktivität wurde eine neue Messmethode etabliert, die auf der Messung der Impedanz bei fester Frequenz basiert und u.a. eine Aussage über die Änderung des Membranwiderstandes bei Aktivierung erlaubt. Am Beispiel des nicotinischen Acetylcholinrezeptors (nAchR) konnte gezeigt werden, dass sich die Aktivität von Ionenkanälen mit dem entwickelten Chip-System nachweisen ließ. Die Spezifität der Methode konnte durch verschiedene Kontrollen wie die Zugabe eines nicht-aktivierenden Liganden oder Inhibition des Rezeptors nachgewiesen werden. Weiterhin konnte die in vitro Synthese des Ionenkanals a7 nAchR durch Radioaktivmarkierung nachgewiesen werden. Die Inkorporation des Rezeptors in die biomimetischen Membranen wurde mit Immunodetektion und elektrochemischen Methoden untersucht. Es zeigte sich, dass die funktionelle Inkorporation des a7 nAchR davon abhing, welcher biomimetische Membranaufbau verwendet wurde.
Resumo:
Im Rahmen dieser Arbeit ist es gelungen, ein besseres Verständnis der beiden Metalloproteasen Meprin α und β in ihrem proteolytischen Netzwerk hinsichtlich ihrer physiologischen Regulation durch endogene Inhibitoren, wie auch der biologischen Funktion von Meprin α für den Prozess der Angiogenese, zu erlangen. rnMit der Analyse des ersten identifizierten endogenen Meprin-Inhibitors Fetuin-A gelang die Bestimmung der Ki-Werte für Meprin α mit 4,2 x 10-5 M und 1,1 x 10-6 M für Meprin β. Des Weiteren konnte für Meprin β eine Schnittstelle im Fetuin-A validiert werden. Mit der Identifizierung von Cystatin C, einem Cystein-Protease-Inhibitor als endogener Inhibitor der Metalloprotease Meprin α, mit einem Ki-Wert von 8,5 x 10-6 M, wurden erstmals Proteasefamilie-übergreifende Inhibitionsmechanismen für Metalloproteasen offenbart.rnDie Analyse von drei potentiellen Meprin-Inhibitoren, identifiziert als Substrate in einem neuen Proteomics-Analyse-Verfahren terminal amine isotopic labeling of substrates (TAILS), ermöglichte die Charakterisierung von Elafin als spezifischen Meprin α-Inhibitor. Für Elafin ist es außerdem gelungen, die durch TAILS ermittelte Schnittstelle für Meprin α mittels Edman Sequenzierung zu validieren. Der secretory leukocyte peptidase inhibitor (SLPI), ein Elafin-Homolog, konnte als weiteres Meprin α-Substrat bestätigt werden. Außerdem gelang es, die Meprin α-Schnittstelle im SLPI zu validieren.rnEin weiteres Ziel dieser Arbeit war, ein besseres Verständnis der biologischen Funktion der Metalloprotease Meprin α zu erlangen. Hier konnte in vivo eine stark pro-angiogene Wirkung von Meprin α gezeigt werden und erstmals die Expression von Meprin α, jedoch nicht von Meprin β, in Endothelzellen nachgewiesen werden. Zugleich konnte mit der Analyse der durch die TAILS-Methode identifizierten pro-angiogenen Substrate vascular endothelial growth factor A (VEGF-A) und connective tissue growth factor (CTGF) der Regulationsmechanismus von Meprin α in der Angiogenese identifiziert werden. So ist Meprin α durch die Spaltung von CTGF in der Lage VEGF-A – gebunden und inhibiert im Komplex mit CTGF – durch proteolytische Spaltung von CTGF wieder freizusetzen. Somit wird die inhibierte VEGF-A-Aktivität wieder vollständig hergestellt. rnMit der Charakterisierung der ersten endogenen Meprin-Inhibitoren ist es gelungen, zu einem besseren Verständnis der endogenen Regulation der Meprine beizutragen und eine Proteasefamilie-übergreifende endogene Regulation aufzuzeigen. Mit der Entdeckung von Meprin α als pro-angiogene Protease und der Entschlüsselung des angiogenen Regulationsmechanismus konnte eine essentielle biologische Bedeutung dieser Protease beschrieben werden.rn
Resumo:
Im Rahmen dieser Arbeit wurden verschiedene funktionale, polymerisierbare Tenside (Surfmere) synthetisiert, um unmittelbar und exklusiv die Partikeloberfläche in der Miniemulsionspolymerisation mit der gewünschten Funktion für weitere Anwendungen auszurüsten. Hierdurch ist es möglich, auf konventionelle Tenside, welche bedingt durch ihre Mobilität in einigen Anwendungen zu Schwierigkeiten führen, gänzlich zu verzichten. Zusätzlich bietet der Einsatz von Surfmeren eine höhere Kontrolle über die Lokalisation und Verteilung der Funktionalitäten auf der Partikeloberfläche, im Vergleich zum Einsatz von klassischen Comonomeren. rnThematische Schwerpunkte der Arbeit lagen in der Ausrüstung von Partikeloberflächen mit Haftgruppen (Phosphonsäuren) oder Fluoreszenzmarkern sowie der Aufbringung von Initiatorgruppen über Surfmere zur Synthese von Kern-Schale-Partikeln in einem zweistufigen Prozess. Bei allen neu synthetisierten Surfmeren wurde als polymerisierbare Einheit eine Methacrylamidgruppe gewählt, um Funktionalitätenverlust durch Hydrolyse auszuschließen.rnIm Bereich der Haftgruppen wurde gezeigt, dass der Einsatz von phosphonathaltigen Surfmeren die Kontrolle der Partikelgröße und Funktionalisierungsdichte in weiten Bereichen ermöglicht und langzeitstabile Dispersionen erhalten werden. Die Partikel wurden auf ihre Cytotoxizität und ihre biomimetische Mineralisierbarkeit hin untersucht.rnZum Nachweis der Copolymerisation des Surfmers mit dem Hauptmonomer wurde ein Phosphonsäure-Surfmer mit einem Farbstoff auf Naphthalimidbasis synthetisiert. Dies ermöglichte den Nachweis der Copolymerisation mittels Gelpermeationschromatographie.rnZur Fluoreszenzmarkierung von Partikeloberfläche wurden erstmals Surfmere realisiert, die in der Kopfgruppe eine BODIPY-Einheit, welche in 2 oder 2,6-Position sulfoniert wurde, als Fluorophor tragen. Der Polymerisationsbeweis wurde durch HPLC-Messungen geführt und die Lokalisation auf der Partikeloberfläche durch Quenchungsexperimente verifiziert. rnDes Weiteren wurde ein kationisches Surfmer synthetisiert, welches nahe der Kopfgruppe eine Bromo iso-buttersäureeinheit zur AGET-ATRP-Initiierung trägt und somit potentiell zum Aufbau von Kern-Schale-Morphologien befähigt ist.
Resumo:
Methane is the most abundant reduced organic compound in the atmosphere. As the strongest known long-lived greenhouse gas after water vapour and carbon dioxide methane perturbs the radiation balance of Earth’s atmosphere. The abiotic formation of methane requires ultraviolet irradiation of organic matter or takes place in locations with high temperature and/or pressure, e.g. during biomass burning or serpentinisation of olivine, under hydrothermal conditions in the oceans deep or below tectonic plates. The biotic methane formation was traditionally thought to be formed only by methanogens under strictly anaerobic conditions, such as in wetland soils, rice paddies and agricultural waste. rnIn this dissertation several chemical pathways are described which lead to the formation of methane under aerobic and ambient conditions. Organic precursor compounds such as ascorbic acid and methionine were shown to release methane in a chemical system including ferrihydrite and hydrogen peroxide in aquatic solution. Moreover, it was shown by using stable carbon isotope labelling experiments that the thio-methyl group of methionine was the carbon precursor for the methane produced. Methionine, a compound that plays an important role in transmethylation processes in plants was also applied to living plants. Stable carbon isotope labelling experiments clearly verified that methionine acts as a precursor compound for the methane from plants. Further experiments in which the electron transport chain was inhibited suggest that the methane generation is located in the mitochondria of the plants. The abiotic formation of methane was shown for several soil samples. Important environmental parameter such as temperature, UV irradiation and moisture were identified to control methane formation. The organic content of the sample as well as water and hydrogen peroxide might also play a major role in the formation of methane from soils. Based on these results a novel scheme was developed that includes both biotic and chemical sources of methane in the pedosphere.rn
Resumo:
Herz-Kreislauf-Erkrankungen zählen weltweit zu den Hauptursachen, die zu frühzeitigem Tod führen. Pathophysiologisch liegt eine Gefäßwandverdickung durch Ablagerung arteriosklerotischer Plaques (Arteriosklerose) vor. Die molekulare Bildgebung mit den nuklearmedizinischen Verfahren SPECT und PET zielt darauf ab, minderperfundierte Myokardareale zu visualisieren, um den Krankheitsverlauf durch frühzeitige Therapie abschwächen zu können. Routinemäßig eingesetzt werden die SPECT-Perfusionstracer [99mTc]Sestamibi und [99mTc]Tetrofosmin. Zum Goldstandard für die Quantifizierung der Myokardperfusion werden allerdings die PET-Tracer [13N]NH3 und [15O]H2O, da eine absolute Bestimmung des Blutflusses in mL/min/g sowohl in der Ruhe als auch bei Belastung möglich ist. 2007 wurde [18F]Flurpiridaz als neuer Myokardtracer vorgestellt, dessen Bindung an den MC I sowohl in Ratten, Hasen, Primaten als auch in ersten klinischen Humanstudien eine selektive Myokardaufnahme zeigte. Um eine Verfügbarkeit des Radionuklids über einen Radionuklidgenerator gewährleisten zu können, sollten makrozyklische 68Ga-Myokard-Perfusionstracer auf Pyridaben-Basis synthetisiert und evaluiert werden. Die neue Tracer-Klasse setzte sich aus dem makrozyklischen Chelator, einem Linker und dem Insektizid Pyridaben als Targeting-Vektor zusammen. Struktur-Affinitätsbeziehungen konnten auf Grund von Variation des Linkers (Länge und Polarität), der Komplexladung (neutral und einfach positiv geladen), des Chelators (DOTA, NODAGA, DO2A) sowie durch einen Multivalenzansatz (Monomer und Dimer) aufgestellt werden. Insgesamt wurden 16 neue Verbindungen synthetisiert. Ihre 68Ga-Markierung wurde hinsichtlich pH-Wert, Temperatur, Vorläufermenge und Reaktionszeit optimiert. Die DOTA/NODAGA-Pyridaben-Derivate ließen sich mit niedrigen Substanzmengen (6 - 25 nmol) in 0,1 M HEPES-Puffer (pH 3,4) bei 95°C innerhalb 15 min mit Ausbeuten > 95 % markieren. Für die DO2A-basierenden Verbindungen bedurfte es einer mikrowellengestützen Markierung (300 W, 1 min, 150°C), um vergleichbare Ausbeuten zu erzielen. Die in vitro-Stabilitätstests aller Verbindungen erfolgten in EtOH, NaCl und humanem Serum. Es konnten keine Instabilitäten innerhalb 80 min bei 37°C festgestellt werden. Unter Verwendung der „shake flask“-Methode wurden die Lipophilien (log D = -1,90 – 1,91) anhand des Verteilungs-quotienten in Octanol/PBS-Puffer ermittelt. Die kalten Referenzsubstanzen wurden mit GaCl3 hergestellt und zur Bestimmung der IC50-Werte (34,1 µM – 1 µM) in vitro auf ihre Affinität zum MC I getestet. In vivo-Evaluierungen erfolgten mit den zwei potentesten Verbindungen [68Ga]VN160.MZ und [68Ga]VN167.MZ durch µ-PET-Aufnahmen (n=3) in gesunden Ratten über 60 min. Um die Organverteilung ermitteln zu können, wurden ex vivo-Biodistributionsstudien (n=3) vorgenommen. Sowohl die µ-PET-Untersuchungen als auch die Biodistributionsstudien zeigten, dass es bei [68Ga]VN167.MZ zwar zu einer Herzaufnahme kam, die jedoch eher perfusionsabhängig ist. Eine Retention des Tracers im Myokard konnte in geringem Umfang festgestellt werden.
Resumo:
The betaine/GABA transporter BGT1 is one of the most important osmolyte transporters in the kidney. BGT1 is a member of the neurotransmitter sodium symporter (NSS) family, facilitates Na+/Cl--coupled betaine uptake to cope with hyperosmotic stress. Betaine transport in kidney cells is upregulated under hypertonic conditions by a yet unknown mechanism when increasing amounts of intracellular BGT1 are inserted into the plasma membrane. Re-establishing isotonicity results in ensuing depletion of BGT1 from the membrane. BGT1 phosphorylation on serines and threonines might be a regulation mechanism. In the present study, four potential PKC phosphorylation sites were mutated to alanines and the responses to PKC activators, phorbol 12-myristate acetate (PMA) and dioctanoyl-sn-glycerol (DOG) were determined. GABA-sensitive currents were diminished after 30 min preincubation with these PKC activators. Staurosporine blocked the response to DOG. Three mutants evoked normal GABA-sensitive currents but currents in oocytes expressing the mutant T40A were greatly diminished. [3H]GABA uptake was also determined in HEK-293 cells expressing EGFP-tagged BGT1 with the same mutations. Three mutants showed normal upregulation of GABA uptake after hypertonic stress, and downregulation by PMA was normal compared to EGFP-BGT1. In contrast, GABA uptake by the T40A mutant showed no response to hypertonicity or PMA. Confocal microscopy of the EGFP-BGT1 mutants expressed in MDCK cells, grown on glass or filters, revealed that T40A was present in the cytoplasm after 24 h hypertonic stress while the other mutants and EGFP-BGT1 were predominantely present in the plasma membrane. All four mutants co-migrated with EGFP-BGT1 on Western blots suggesting they are full-length proteins. In conclusion, T235, S428, and S564 are not involved in downregulation of BGT1 due to phosphorylation by PKC. However, T40 near the N-terminus may be part of a hot spot important for normal trafficking or insertion of BGT1 into the plasma membrane. Additionally, a link between substrate transport regulation, insertion of BGT1 into the plasma membrane and N-glycosylation in the extracellular loop 2 (EL2) could be revealed. The functional importance of two predicted N-glycosylation sites, which are conserved in EL2 within the NSS family were investigated for trafficking, transport and regulated plasma membrane insertion by immunogold-labelling, electron microscopy, mutagenesis, two-electrode voltage clamp measurements in Xenopus laevis oocytes and uptake of radioactive-labelled substrate into MDCK cells. Trafficking and plasma membrane insertion of BGT1 was clearly promoted by proper N-glycosylation in both, oocytes and MDCK cells. De-glycosylation with PNGase F or tunicamycin led to a decrease in substrate affinity and transport rate. Mutagenesis studies revealed that in BGT1 N183 is the major N-glycosylation site responsible for full protein activity. Replacement of N183 with aspartate resulted in a mutant, which was not able to bind N-glycans suggesting that N171 is a non-glycosylated site in BGT1. N183D exhibited close to WT transport properties in oocytes. Surprisingly, in MDCK cells plasma membrane insertion of the N183D mutant was no longer regulated by osmotic stress indicating unambiguously that association with N-glycans at this position is linked to osmotic stress-induced transport regulation in BGT1. The molecular transport mechanism of BGT1 remains largely unknown in the absence of a crystal structure. Therefore investigating the structure-function relationship of BGT1 by a combination of structural biology (2D and 3D crystallization) and membrane protein biochemistry (cell culture, substrate transport by radioactive labeled GABA uptake into cells and proteoliposomes) was the aim of this work. While the functional assays are well established, structure determination of eukaryotic membrane transporters is still a challenge. Therefore, a suitable heterologous expression system could be defined, starting with cloning and overexpression of an optimized gene. The achieved expression levels in P. pastoris were high enough to proceed with isolation of BGT1. Furthermore, purification protocols could be established and resulted in pure protein, which could even be reconstituted in an active form. The quality and homogeneity of the protein allowed already 2D and 3D crystallization, in which initial crystals could be obtained. Interestingly, the striking structural similarity of BGT1 to the bacterial betaine transporter BetP, which became a paradigm for osmoregulated betaine transport, provided information on substrate coordination in BGT1. The structure of a BetP mutant that showed activity for GABA was solved to 3.2Å in complex with GABA in an inward facing open state. This structure shed some light into the molecular transport mechanisms in BGT1 and might help in future to design conformationally locked BGT1 to enforce the on-going structure determination.