37 resultados para ab-initio molecular dynamics simulations, chemical hydrogen storage, anhydride proton conduction
Resumo:
This thesis was driven by the ambition to create suitable model systems that mimic complex processes in nature, like intramolecular transitions, such as unfolding and refolding of proteins, or intermolecular interactions between different cell compo-nents. Novel biophysical approaches were adopted by employing atomic force mi-croscopy (AFM) as the main measurement technique due to its broad diversity. Thus, high-resolution imaging, adhesion measurements, and single-molecule force distance experiments were performed on the verge of the instrumental capabilities. As first objective, the interaction between plasma membrane and cytoskeleton, me-diated by the linker protein ezrin, was pursued. Therefore, the adsorption process and the lateral organization of ezrin on PIP2 containing solid-supported membranes were characterized and quantified as a fundament for the establishment of a biomimetic model system. As second component of the model system, actin filaments were coated on functionalized colloidal probes attached on cantilevers, serving as sensor elements. The zealous endeavor of creating this complex biomimetic system was rewarded by successful investigation of the activation process of ezrin. As a result, it can be stated that ezrin is activated by solely binding to PIP2 without any further stimulating agents. Additional cofactors may stabilize and prolong the active conformation but are not essentially required for triggering ezrin’s transformation into an active conformation. In the second project, single-molecule force distance experiments were performed on bis-loop tetra-urea calix[4]arene-catenanes with different loading rates (increase in force per second). These macromolecules were specifically designed to investigate the rupture and rejoining mechanism of hydrogen bonds under external load. The entangled loops of capsule-like molecules locked the unbound state of intramolecular hydrogen bonds mechanically, rendering a rebinding observable on the experimental time scale. In conjunction with Molecular Dynamics simulations, a three-well potential of the bond rupture process was established and all kinetically relevant parameters of the experiments were determined by means of Monte Carlo simulations and stochastic modeling. In summary, it can be stated that atomic force microscopy is an invaluable tool to scrutinize relevant processes in nature, such as investigating activation mechanisms in proteins, as shown by analysis of the interaction between F-actin and ezrin, as well as exploring fundamental properties of single hydrogen bonds that are of paramount interest for the complete understanding of complex supramolecular structures.
Resumo:
This thesis studies molecular dynamics simulations on two levels of resolution: the detailed level of atomistic simulations, where the motion of explicit atoms in a many-particle system is considered, and the coarse-grained level, where the motion of superatoms composed of up to 10 atoms is modeled. While atomistic models are capable of describing material specific effects on small scales, the time and length scales they can cover are limited due to their computational costs. Polymer systems are typically characterized by effects on a broad range of length and time scales. Therefore it is often impossible to atomistically simulate processes, which determine macroscopic properties in polymer systems. Coarse-grained (CG) simulations extend the range of accessible time and length scales by three to four orders of magnitude. However, no standardized coarse-graining procedure has been established yet. Following the ideas of structure-based coarse-graining, a coarse-grained model for polystyrene is presented. Structure-based methods parameterize CG models to reproduce static properties of atomistic melts such as radial distribution functions between superatoms or other probability distributions for coarse-grained degrees of freedom. Two enhancements of the coarse-graining methodology are suggested. Correlations between local degrees of freedom are implicitly taken into account by additional potentials acting between neighboring superatoms in the polymer chain. This improves the reproduction of local chain conformations and allows the study of different tacticities of polystyrene. It also gives better control of the chain stiffness, which agrees perfectly with the atomistic model, and leads to a reproduction of experimental results for overall chain dimensions, such as the characteristic ratio, for all different tacticities. The second new aspect is the computationally cheap development of nonbonded CG potentials based on the sampling of pairs of oligomers in vacuum. Static properties of polymer melts are obtained as predictions of the CG model in contrast to other structure-based CG models, which are iteratively refined to reproduce reference melt structures. The dynamics of simulations at the two levels of resolution are compared. The time scales of dynamical processes in atomistic and coarse-grained simulations can be connected by a time scaling factor, which depends on several specific system properties as molecular weight, density, temperature, and other components in mixtures. In this thesis the influence of molecular weight in systems of oligomers and the situation in two-component mixtures is studied. For a system of small additives in a melt of long polymer chains the temperature dependence of the additive diffusion is predicted and compared to experiments.
Resumo:
In the early 20th century, Gouy, Chapman, and Stern developed a theory to describe the capacitance and the spatial ion distribution of diluted electrolytes near an electrode. After a century of research, considerable progress has been made in the understanding of the electrolyte/electrode interface. However, its molecular-scale structure and its variation with an applied potential is still under debate. In particular for room-temperature ionic liquids, a new class of solventless electrolytes, the classical theories for the electrical double layer are not applicable. Recently, molecular dynamics simulations and phenomenological theories have attempted to explain the capacitance of the ionic liquid/electrode interface with the molecular-scale structure and dynamics of the ionic liquid near the electrode. rnHowever, experimental evidence is very limited. rnrnIn the presented study, the ion distribution of an ionic liquid near an electrode and its response to applied potentials was examined with sub-molecular resolution. For this purpose, a new sample chamber was constructed, allowing in situ high energy X-ray reflectivity experiments under potential control, as well as impedance spectroscopy measurements. The combination of structural information and electrochmical data provided a comprehensive picture of the electric double layer in ionic liquids. Oscillatory charge density profiles were found, consisting of alternating anion- and cation-enriched layers at both, cathodic and anodic, potentials. This structure was shown to arise from the same ion-ion correlations dominating the liquid bulk structure that were observed as a distinct X-ray diffraction peak. Therefore, existing physically motivated models were refined and verified by comparison with independent measurements. rnrnThe relaxation dynamics of the interfacial structure upon potential variation were studied by time resolved X-ray reflectivity experiments with sub-millisecond resolution. The observed relaxation times during charging/discharging are consistent with the impedance spectroscopy data revealing three processes of vastly different characteristic time-scales. Initially, the ion transport normal to the interface happens on a millisecond-scale. Another 100-millisecond-scale process is associated with molecular reorientation of electrode-adsorbed cations. Further, a minute-scale relaxation was observed, which is tentatively assigned to lateral ordering within the first layer.
Resumo:
One of the most important challenges in chemistry and material science is the connection between the contents of a compound and its chemical and physical properties. In solids, these are greatly influenced by the crystal structure.rnrnThe prediction of hitherto unknown crystal structures with regard to external conditions like pressure and temperature is therefore one of the most important goals to achieve in theoretical chemistry. The stable structure of a compound is the global minimum of the potential energy surface, which is the high dimensional representation of the enthalpy of the investigated system with respect to its structural parameters. The fact that the complexity of the problem grows exponentially with the system size is the reason why it can only be solved via heuristic strategies.rnrnImprovements to the artificial bee colony method, where the local exploration of the potential energy surface is done by a high number of independent walkers, are developed and implemented. This results in an improved communication scheme between these walkers. This directs the search towards the most promising areas of the potential energy surface.rnrnThe minima hopping method uses short molecular dynamics simulations at elevated temperatures to direct the structure search from one local minimum of the potential energy surface to the next. A modification, where the local information around each minimum is extracted and used in an optimization of the search direction, is developed and implemented. Our method uses this local information to increase the probability of finding new, lower local minima. This leads to an enhanced performance in the global optimization algorithm.rnrnHydrogen is a highly relevant system, due to the possibility of finding a metallic phase and even superconductor with a high critical temperature. An application of a structure prediction method on SiH12 finds stable crystal structures in this material. Additionally, it becomes metallic at relatively low pressures.
Resumo:
Die Arbeit beschreibt Untersuchungen zum nichtphoto- chemischen Lochbrennen, das bei 1.4 Kelvin in Form von rein lichtinduzierten Frequenzsprüngen einzelner in p-Terphenyleingebetteter Terrylenmoleküle beobachtet werden kann. Dabei zeigen alle Chromophore aus der X1-Einbaulage ein exzellent reproduzierbares Verhalten, sowohl im bistabilen primären Photozyklus wie auch in dem daran angegliederten sekundärenPhotozyklus, welcher aus drei weiteren spektralen Positionen besteht. Aus den Ergebnissen der nach der genauen Charakterisierung dieser Eigenschaft des Systems durchgeführten Experimente - Fluoreszenzspektroskopie der Photoprodukte, Stark-Effekt-Messungen und Polarisationsmodulation - wird ein Modell für die den lichtinduzierten Änderungen der Absorptionsfrequenzzugrundeliegenden Konformationsänderungender Wirt/Gast- Struktur abgeleitet und diskutiert. Die mittlerweile verfügbaren Ergebnisse von diesbezüglichen molekular- dynamischen Simulationen einer Theoriegruppe ausBordeaux, die alle grundlegenden Annahmen dieses Modellsbestätigen und eine noch genauere mikroskopische Beschreibung des Systems liefern, werden zur Abrundung der Darstellung ebenfalls vorgestellt. Außerdem geht die Dissertation auf die durchgeführten Einzelmolekül- untersuchungen an Terrylen in p-Terphenyl bei Raumtemperatur ein und stellt das im Rahmen der Arbeit aufgebaute temperaturvariable laserscannende Konfokalmikroskop im Detail vor.
Resumo:
We investigate the statics and dynamics of a glassy,non-entangled, short bead-spring polymer melt with moleculardynamics simulations. Temperature ranges from slightlyabove the mode-coupling critical temperature to the liquidregime where features of a glassy liquid are absent. Ouraim is to work out the polymer specific effects on therelaxation and particle correlation. We find the intra-chain static structure unaffected bytemperature, it depends only on the distance of monomersalong the backbone. In contrast, the distinct inter-chainstructure shows pronounced site-dependence effects at thelength-scales of the chain and the nearest neighbordistance. There, we also find the strongest temperaturedependence which drives the glass transition. Both the siteaveraged coupling of the monomer and center of mass (CM) andthe CM-CM coupling are weak and presumably not responsiblefor a peak in the coherent relaxation time at the chain'slength scale. Chains rather emerge as soft, easilyinterpenetrating objects. Three particle correlations arewell reproduced by the convolution approximation with theexception of model dependent deviations. In the spatially heterogeneous dynamics of our system weidentify highly mobile monomers which tend to follow eachother in one-dimensional paths forming ``strings''. Thesestrings have an exponential length distribution and aregenerally short compared to the chain length. Thus, arelaxation mechanism in which neighboring mobile monomersmove along the backbone of the chain seems unlikely.However, the correlation of bonded neighbors is enhanced. When liquids are confined between two surfaces in relativesliding motion kinetic friction is observed. We study ageneric model setup by molecular dynamics simulations for awide range of sliding speeds, temperatures, loads, andlubricant coverings for simple and molecular fluids. Instabilities in the particle trajectories are identified asthe origin of kinetic friction. They lead to high particlevelocities of fluid atoms which are gradually dissipatedresulting in a friction force. In commensurate systemsfluid atoms follow continuous trajectories for sub-monolayercoverings and consequently, friction vanishes at low slidingspeeds. For incommensurate systems the velocity probabilitydistribution exhibits approximately exponential tails. Weconnect this velocity distribution to the kinetic frictionforce which reaches a constant value at low sliding speeds. This approach agrees well with the friction obtaineddirectly from simulations and explains Amontons' law on themicroscopic level. Molecular bonds in commensurate systemslead to incommensurate behavior, but do not change thequalitative behavior of incommensurate systems. However,crossed chains form stable load bearing asperities whichstrongly increase friction.
Resumo:
The fundamental aim in our investigation of the interaction of a polymer film with a nanoparticle is the extraction of information on the dynamics of the liquid using a single tracking particle. In this work two theoretical methods were used: one passive, where the motion of the particle measures the dynamics of the liquid, one active, where perturbations in the system are introduced through the particle. In the first part of this investigation a thin polymeric film on a substrate is studied using molecular dynamics simulations. The polymer is modeled via a 'bead spring' model. The particle is spheric and non structured and is able to interact with the monomers via a Lennard Jones potential. The system is micro-canonical and simulations were performed for average temperatures between the glass transition temperature of the film and its dewetting temperature. It is shown that the stability of the nanoparticle on the polymer film in the absence of gravity depends strongly on the form of the chosen interaction potential between nanoparticle and polymer. The relative position of the tracking particle to the liquid vapor interface of the polymer film shows the glass transition of the latter. The velocity correlation function and the mean square displacement of the particle has shown that it is caged when the temperature is close to the glass transition temperature. The analysis of the dynamics at long times shows the coupling of the nanoparticle to the center of mass of the polymer chains. The use of the Stokes-Einstein formula, which relates the diffusion coefficient to the viscosity, permits to use the nanoparticle as a probe for the determination of the bulk viscosity of the melt, the so called 'microrheology'. It is shown that for low frequencies the result obtained using microrheology coincides with the results of the Rouse model applied to the polymer dynamics. In the second part of this investigation the equations of Linear Hydrodynamics are solved for a nanoparticle oscillating above the film. It is shown that compressible liquids have mechanical response to external perturbations induced with the nanoparticle. These solutions show strong velocity and pressure profiles of the liquid near the interface, as well as a mechanical response of the liquid-vapor interface. The results obtained with this calculations can be employed for the interpretation of experimental results of non contact AFM microscopy
Resumo:
In dieser Dissertation wurden die Methoden Homologiemodellierung und Molekulardynamik genutzt, um die Struktur und das Verhalten von Proteinen in Lösung zu beschreiben. Mit Hilfe der Röntgenkleinwinkelstreuung wurden die mit den Computermethoden erzeugten Vorhersagen verifiziert. Für das alpha-Hämolysin, ein Toxin von Staphylococcus aureus, das eine heptamere Pore formen kann, wurde erstmalig die monomere Struktur des Protein in Lösung beschrieben. Homologiemodellierung auf Basis verwandter Proteine, deren monomere Struktur bekannt war, wurde verwendet, um die monomere Struktur des Toxins vorherzusagen. Flexibilität von Strukturelementen in einer Molekulardynamiksimulation konnte mit der Funktionalität des Proteines korreliert werden: Intrinsische Flexibilität versetzt das Protein in die Lage den Konformationswechsel zur Pore nach Assemblierung zu vollziehen. Röntgenkleinwinkelstreuung bewies die Unterschiede der monomeren Struktur zu den Strukturen der verwandten Proteine und belegt den eigenen Vorschlag zur Struktur. Überdies konnten Arbeiten an einer Mutante, die in einer sogenannten Präporenkonformation arretiert und nicht in der Lage ist eine Pore zu formen, zeigen, dass dieser Übergangszustand mit der Rotationsachse senkrecht zur Membran gelagert ist. Eine geometrische Analyse beweist, dass es sterisch möglich ist ausgehend von dieser Konformation die Konformation der Pore zu erreichen. Eine energetische und kinetische Analyse dieses Konformationswechsels steht noch aus. Ein weiterer Teil der Arbeit befasst sich mit den Konformationswechseln von Hämocyaninen. Diese wurden experimentell mittels Röntgenkleinwinkelstreuung verfolgt. Konformationswechsel im Zusammenhang mit der Oxygenierung konnten für die 24meren Hämocyanine von Eurypelma californicum und Pandinus imperator beschrieben werden. Für eine Reihe von Hämocyaninen ist nachgewiesen, dass sie unter Einfluss des Agenz SDS Tyrosinaseaktivität entfalten können. Der Konformationswechsel der Hämocyanine von E. californicum und P. imperator bei der Aktivierung zur Tyrosinase mittels SDS wurde experimentell bestätigt und die Stellung der Dodekamere der Hämocyanine als wesentlich bei der Aktivierung festgestellt. Im Zusammenhang mit anderen Arbeiten gilt damit die Relaxierung der Struktur unter SDS-Einfluss und der sterische Einfluss auf die verbindenden Untereinheiten b & c als wahrscheinliche Ursache für die Aktivierung zur Tyrosinase. Eigene Software zum sogenannten rigid body-Modellierung auf der Basis von Röntgenkleinwinkelstreudaten wurde erstellt, um die Streudaten des hexameren Hämocyanins von Palinurus elephas und Palinurus argus unter Einfluss der Effektoren Urat und Koffein strukturell zu interpretieren. Die Software ist die erste Implementierung eines Monte Carlo-Algorithmus zum rigid body-Modelling. Sie beherrscht zwei Varianten des Algorithmus: In Verbindung mit simulated annealing können wahrscheinliche Konformationen ausgefiltert werden und in einer anschließenden systematischen Analyse kann eine Konformation geometrisch beschrieben werden. Andererseits ist ein weiterer, reiner Monte Carlo-Algorithmus in der Lage die Konformation als Dichteverteilung zu beschreiben.
Resumo:
To assist rational compound design of organic semiconductors, two problems need to be addressed. First, the material morphology has to be known at an atomistic level. Second, with the morphology at hand, an appropriate charge transport model needs to be developed in order to link charge carrier mobility to structure.rnrnThe former can be addressed by generating atomistic morphologies using molecular dynamics simulations. However, the accessible range of time- and length-scales is limited. To overcome these limitations, systematic coarse-graining methods can be used. In the first part of the thesis, the Versatile Object-oriented Toolkit for Coarse-graining Applications is introduced, which provides a platform for the implementation of coarse-graining methods. Tools to perform Boltzmann inversion, iterative Boltzmann inversion, inverse Monte Carlo, and force-matching are available and have been tested on a set of model systems (water, methanol, propane and a single hexane chain). Advantages and problems of each specific method are discussed.rnrnIn partially disordered systems, the second issue is closely connected to constructing appropriate diabatic states between which charge transfer occurs. In the second part of the thesis, the description initially used for small conjugated molecules is extended to conjugated polymers. Here, charge transport is modeled by introducing conjugated segments on which charge carriers are localized. Inter-chain transport is then treated within a high temperature non-adiabatic Marcus theory while an adiabatic rate expression is used for intra-chain transport. The charge dynamics is simulated using the kinetic Monte Carlo method.rnrnThe entire framework is finally employed to establish a relation between the morphology and the charge mobility of the neutral and doped states of polypyrrole, a conjugated polymer. It is shown that for short oligomers, charge carrier mobility is insensitive to the orientational molecular ordering and is determined by the threshold transfer integral which connects percolating clusters of molecules that form interconnected networks. The value of this transfer integral can be related to the radial distribution function. Hence, charge mobility is mainly determined by the local molecular packing and is independent of the global morphology, at least in such a non-crystalline state of a polymer.
Resumo:
The ability of block copolymers to spontaneously self-assemble into a variety of ordered nano-structures not only makes them a scientifically interesting system for the investigation of order-disorder phase transitions, but also offers a wide range of nano-technological applications. The architecture of a diblock is the most simple among the block copolymer systems, hence it is often used as a model system in both experiment and theory. We introduce a new soft-tetramer model for efficient computer simulations of diblock copolymer melts. The instantaneous non-spherical shape of polymer chains in molten state is incorporated by modeling each of the two blocks as two soft spheres. The interactions between the spheres are modeled in a way that the diblock melt tends to microphase separate with decreasing temperature. Using Monte Carlo simulations, we determine the equilibrium structures at variable values of the two relevant control parameters, the diblock composition and the incompatibility of unlike components. The simplicity of the model allows us to scan the control parameter space in a completeness that has not been reached in previous molecular simulations.The resulting phase diagram shows clear similarities with the phase diagram found in experiments. Moreover, we show that structural details of block copolymer chains can be reproduced by our simple model.We develop a novel method for the identification of the observed diblock copolymer mesophases that formalizes the usual approach of direct visual observation,using the characteristic geometry of the structures. A cluster analysis algorithm is used to determine clusters of each component of the diblock, and the number and shape of the clusters can be used to determine the mesophase.We also employ methods from integral geometry for the identification of mesophases and compare their usefulness to the cluster analysis approach.To probe the properties of our model in confinement, we perform molecular dynamics simulations of atomistic polyethylene melts confined between graphite surfaces. The results from these simulations are used as an input for an iterative coarse-graining procedure that yields a surface interaction potential for the soft-tetramer model. Using the interaction potential derived in that way, we perform an initial study on the behavior of the soft-tetramer model in confinement. Comparing with experimental studies, we find that our model can reflect basic features of confined diblock copolymer melts.
Resumo:
Topologische Beschränkungen beeinflussen die Eigenschaften von Polymeren. Im Rahmen dieser Arbeit wird mit Hilfe von Computersimulationen im Detail untersucht, inwieweit sich die statischen Eigenschaften von kollabierten Polymerringen, Polymerringen in konzentrierten Lösungen und aus Polymerringen aufgebauten Bürsten mit topologischen Beschränkungen von solchen ohne topologische Beschränkungen unterscheiden. Des Weiteren wird analysiert, welchen Einfluss geometrische Beschränkungen auf die topologischen Eigenschaften von einzelnen Polymerketten besitzen. Im ersten Teil der Arbeit geht es um den Einfluss der Topologie auf die Eigenschaften einzelner Polymerketten in verschiedenen Situationen. Da allerdings gerade die effiziente Durchführung von Monte-Carlo-Simulationen von kollabierten Polymerketten eine große Herausforderung darstellt, werden zunächst drei Bridging-Monte-Carlo-Schritte für Gitter- auf Kontinuumsmodelle übertragen. Eine Messung der Effizienz dieser Schritte ergibt einen Beschleunigungsfaktor von bis zu 100 im Vergleich zum herkömmlichen Slithering-Snake-Algorithmus. Darauf folgt die Analyse einer einzelnen, vergröberten Polystyrolkette in sphärischer Geometrie hinsichtlich Verschlaufungen und Knoten. Es wird gezeigt, dass eine signifikante Verknotung der Polystrolkette erst eintritt, wenn der Radius des umgebenden Kapsids kleiner als der Gyrationsradius der Kette ist. Des Weiteren werden sowohl Monte-Carlo- als auch Molekulardynamiksimulationen sehr großer Ringe mit bis zu einer Million Monomeren im kollabierten Zustand durchgeführt. Während die Konfigurationen aus den Monte-Carlo-Simulationen aufgrund der Verwendung der Bridging-Schritte sehr stark verknotet sind, bleiben die Konfigurationen aus den Molekulardynamiksimulationen unverknotet. Hierbei zeigen sich signifikante Unterschiede sowohl in der lokalen als auch in der globalen Struktur der Ringpolymere. Im zweiten Teil der Arbeit wird das Skalierungsverhalten des Gyrationsradius der einzelnen Polymerringe in einer konzentrierten Lösung aus völlig flexiblen Polymerringen im Kontinuum untersucht. Dabei wird der Anfang des asymptotischen Skalierungsverhaltens, welches mit dem Modell des “fractal globules“ konsistent ist, erreicht. Im abschließenden, dritten Teil dieser Arbeit wird das Verhalten von Bürsten aus linearen Polymeren mit dem von Ringpolymerbürsten verglichen. Dabei zeigt sich, dass die Struktur und das Skalierungsverhalten beider Systeme mit identischem Dichteprofil parallel zum Substrat deutlich voneinander abweichen, obwohl die Eigenschaften beider Systeme in Richtung senkrecht zum Substrat übereinstimmen. Der Vergleich des Relaxationsverhaltens einzelner Ketten in herkömmlichen Polymerbürsten und Ringbürsten liefert keine gravierenden Unterschiede. Es stellt sich aber auch heraus, dass die bisher verwendeten Erklärungen zur Relaxationsverhalten von herkömmlichen Bürsten nicht ausreichen, da diese lediglich den anfänglichen Zerfall der Korrelationsfunktion berücksichtigen. Bei der Untersuchung der Dynamik einzelner Monomere in einer herkömmlichen Bürste aus offenen Ketten vom Substrat hin zum offenen Ende zeigt sich, dass die Monomere in der Mitte der Kette die langsamste Relaxation besitzen, obwohl ihre mittlere Verrückung deutlich kleiner als die der freien Endmonomere ist.
Resumo:
In den vergangenen Jahren wurden einige bislang unbekannte Phänomene experimentell beobachtet, wie etwa die Existenz unterschiedlicher Prä-Nukleations-Strukturen. Diese haben zu einem neuen Verständnis von Prozessen, die auf molekularer Ebene während der Nukleation und dem Wachstum von Kristallen auftreten, beigetragen. Die Auswirkungen solcher Prä-Nukleations-Strukturen auf den Prozess der Biomineralisation sind noch nicht hinreichend verstanden. Die Mechanismen, mittels derer biomolekulare Modifikatoren, wie Peptide, mit Prä-Nukleations-Strukturen interagieren und somit den Nukleationsprozess von Mineralen beeinflussen könnten, sind vielfältig. Molekulare Simulationen sind zur Analyse der Formation von Prä-Nukleations-Strukturen in Anwesenheit von Modifikatoren gut geeignet. Die vorliegende Arbeit beschreibt einen Ansatz zur Analyse der Interaktion von Peptiden mit den in Lösung befindlichen Bestandteilen der entstehenden Kristalle mit Hilfe von Molekular-Dynamik Simulationen.rnUm informative Simulationen zu ermöglichen, wurde in einem ersten Schritt die Qualität bestehender Kraftfelder im Hinblick auf die Beschreibung von mit Calciumionen interagierenden Oligoglutamaten in wässrigen Lösungen untersucht. Es zeigte sich, dass große Unstimmigkeiten zwischen etablierten Kraftfeldern bestehen, und dass keines der untersuchten Kraftfelder eine realistische Beschreibung der Ionen-Paarung dieser komplexen Ionen widerspiegelte. Daher wurde eine Strategie zur Optimierung bestehender biomolekularer Kraftfelder in dieser Hinsicht entwickelt. Relativ geringe Veränderungen der auf die Ionen–Peptid van-der-Waals-Wechselwirkungen bezogenen Parameter reichten aus, um ein verlässliches Modell für das untersuchte System zu erzielen. rnDas umfassende Sampling des Phasenraumes der Systeme stellt aufgrund der zahlreichen Freiheitsgrade und der starken Interaktionen zwischen Calciumionen und Glutamat in Lösung eine besondere Herausforderung dar. Daher wurde die Methode der Biasing Potential Replica Exchange Molekular-Dynamik Simulationen im Hinblick auf das Sampling von Oligoglutamaten justiert und es erfolgte die Simulation von Peptiden verschiedener Kettenlängen in Anwesenheit von Calciumionen. Mit Hilfe der Sketch-Map Analyse konnten im Rahmen der Simulationen zahlreiche stabile Ionen-Peptid-Komplexe identifiziert werden, welche die Formation von Prä-Nukleations-Strukturen beeinflussen könnten. Abhängig von der Kettenlänge des Peptids weisen diese Komplexe charakteristische Abstände zwischen den Calciumionen auf. Diese ähneln einigen Abständen zwischen den Calciumionen in jenen Phasen von Calcium-Oxalat Kristallen, die in Anwesenheit von Oligoglutamaten gewachsen sind. Die Analogie der Abstände zwischen Calciumionen in gelösten Ionen-Peptid-Komplexen und in Calcium-Oxalat Kristallen könnte auf die Bedeutung von Ionen-Peptid-Komplexen im Prozess der Nukleation und des Wachstums von Biomineralen hindeuten und stellt einen möglichen Erklärungsansatz für die Fähigkeit von Oligoglutamaten zur Beeinflussung der Phase des sich formierenden Kristalls dar, die experimentell beobachtet wurde.
Resumo:
Der Fokus dieser Doktorarbeit liegt auf der kontrollierten Benetzung von festen Oberflächen, die in vielen Bereichen, wie zum Beispiel in der Mikrofluidik, für Beschichtungen und in biologischen Studien von Zellen oder Bakterien, von großer Bedeutung ist.rnDer erste Teil dieser Arbeit widmet sich der Frage, wie Nanorauigkeit das Benetzungsverhalten, d.h. die Kontaktwinkel und die Pinningstärke, von hydrophoben und superhydrophoben Beschichtungen beeinflusst. Hierfür wird eine neue Methode entwickelt, um eine nanoraue Silika-Beschichtung über die Gasphase auf eine superhydrophobe Oberfläche, die aus rauen Polystyrol-Silika-Kern-Schale-Partikeln besteht, aufzubringen. Es wird gezeigt, dass die Topographie und Dichte der Nanorauigkeiten bestimmt, ob sich die Superhydrophobizität verringert oder erhöht, d.h. ob sich ein Flüssigkeitstropfen im Nano-Wenzel- oder Nano-Cassie-Zustand befindet. Das verstärkte Pinning im Nano-Wenzel-Zustand beruht auf dem Eindringen von Flüssigkeitsmolekülen in die Nanoporen der Beschichtung. Im Nano-Cassie-Zustand dagegen sitzt der Tropfen auf den Nanorauigkeiten, was das Pinning vermindert. Die experimentellen Ergebnisse werden mit molekulardynamischen Simulationen in Bezug gesetzt, die den Einfluss der Oberflächenbeschichtungsdichte und der Länge von fluorinierten Silanen auf die Hydrophobizität einer Oberfläche untersuchen. rnEs wurden bereits verschiedenste Techniken zur Herstellung von transparenten superhydrophoben, d.h. extrem flüssigkeitsabweisenden, Oberflächen entwickelt. Eine aktuelle Herausforderung liegt darin, Funktionalitäten einzuführen, ohne die superhydrophoben Eigenschaften einer Oberfläche zu verändern. Dies ist extrem anspruchsvoll, da funktionelle Gruppen in der Regel hydrophil sind. In dieser Arbeit wird eine innovative Methode zur Herstellung von transparenten superhydrophoben Oberflächen aus Janus-Mikrosäulen mit variierenden Dimensionen und Topographien entwickelt. Die Janus-Säulen haben hydrophobe Seitenwände und hydrophile Silika-Oberseiten, die anschließend selektiv und ohne Verlust der superhydrophoben Eigenschaften der Oberfläche funktionalisiert werden können. Diese selektive Oberflächenfunktionalisierung wird mittels konfokaler Mikroskopie und durch das chemische Anbinden von fluoreszenten Molekülen an die Säulenoberseiten sichtbar gemacht. Außerdem wird gezeigt, dass das Benetzungsverhalten durch Wechselwirkungen zwischen Flüssigkeit und Festkörper in der Nähe der Benetzungslinie bestimmt wird. Diese Beobachtung widerlegt das allgemein akzeptierte Modell von Cassie und Baxter und beinhaltet, dass hydrophile Flächen, die durch mechanischen Abrieb freigelegt werden, nicht zu einem Verlust der Superhydrophobizität führen müssen, wie allgemein angenommen.rnBenetzung kann auch durch eine räumliche Beschränkung von Flüssigkeiten kontrolliert werden, z.B. in mikrofluidischen Systemen. Hier wird eine modifizierte Stöber-Synthese verwendet, um künstliche und natürliche Faser-Template mit einer Silika-Schicht zu ummanteln. Nach der thermischen Zersetzung des organischen Templat-Materials entstehen wohldefinierte Silika-Kanäle und Kanalkreuzungen mit gleichmäßigen Durchmessern im Nano- und Mikrometerbereich. Auf Grund ihrer Transparenz, mechanischen Stabilität und des großen Länge-zu-Durchmesser-Verhältnisses sind die Kanäle sehr gut geeignet, um die Füllgeschwindigkeiten von Flüssigkeiten mit variierenden Oberflächenspannungen und Viskositäten zu untersuchen. Konfokale Mikroskopie ermöglicht es hierbei, die Füllgeschwindigkeiten über eine Länge von mehreren Millimetern, sowie direkt am Kanaleingang zu messen. Das späte Füllstadium kann sehr gut mit der Lucas-Washburn-Gleichung beschrieben werden. Die anfänglichen Füllgeschwindigkeiten sind jedoch niedriger als theoretisch vorhergesagt. Wohingegen die vorhergehenden Abschnitte dieser Arbeit sich mit der quasistatischen Benetzung beschäftigen, spielt hier die Dynamik der Benetzung eine wichtige Rolle. Tatsächlich lassen sich die beobachteten Abweichungen durch einen geschwindigkeitsabhängigen Fortschreitkontaktwinkel erklären und durch dynamische Benetzungstheorien modellieren. Somit löst diese Arbeit das seit langem diskutierte Problem der Abweichungen von der Lucas-Washburn-Gleichung bei kleinen Füllgeschwindigkeiten.
Resumo:
Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.
Structure and dynamics of supramolecular assemblies studied by advanced solid-state NMR spectroscopy
Resumo:
Ziel der vorliegenden Arbeit ist die Aufklärung von Struktur und Dynamik komplexer supramolekularer Systeme mittels Festkörper NMR Spektroskopie. Die Untersuchung von pi-pi Wechselwirkungen, welche einen entscheidenden Einfluss auf die strukturellen und dynamischen Eigenschaften supra- molekularer Systeme haben, hilft dabei, die Selbst- organisationsprozesse dieser komplexen Materialien besser zu verstehen. Mit dipolaren 1H-1H and 1H-13C Wiedereinkopplungs NMR Methoden unter schnellem MAS können sowohl 1H chemische Verschiebungen als auch dipolare 1H-1H und 1H-13C Kopplungen untersucht werden, ohne dass eine Isotopenmarkierung erforderlich ist. So erhält man detaillierte Informationen über die Struktur und die Beweglichkeit einzelner Molekül- segmente. In Verbindung mit sogenannten nucleus independent chemical shift (NICS) maps (berechnet mit ab-initio Methoden) lassen sich Abstände von Protonen relativ zu pi-Elektronensystemen bestimmen und so Strukturvorschläge ableiten. Mit Hilfe von homo- und heteronuklearen dipolaren Rotationsseitenbandenmustern könnenaußerdem Ordnungs- parameter für verschiedene Molekülsegmente bestimmt werden. Die auf diese Weise gewonnenen Informationen über die strukturellen und dynamischen Eigenschaften supramolekularer Systeme tragen dazu bei, strukturbestimmende Molekül- einheiten und Hauptordnungsphänomene zu identifizieren sowie lokale Wechselwirkungen zu quantifizieren, um so den Vorgang der Selbstorganisation besser zu verstehen.