35 resultados para Layered perovskites,Photo-Induced Current Transient Spectroscopy,PICTS,deep states,2D perovskites
Resumo:
Der erste Teil dieser Arbeit befasst sich mit der Kinetik der Reaktion des OH-Radikals mit Glykolaldehyd (HOCH2CHO). Die Geschwindigkeitskonstante k1 wurde für diese Reaktion temperaturabhängig bestimmt. Durch gepulste Photolyse wurden OH-Radikale erzeugt. Anschließend wurde die laserinduzierte Fluoreszenz der OH-Radikale bei 309 nm detektiert. Die ermittelte Geschwindigkeitskonstante k1 für die Reaktion von OH mit HOCH2CHO von (8,0 ± 0,8) x 10-12 cm3 Teilchen-1 s-1 erweist sich für den Temperaturbereich von 240 K < T < 362 K als temperaturunabhängig. Zwischen 60 und 250 Torr kann zudem keine Druckabhängigkeit für k1 beobachtet werden. Die unerwartet niedrigere Geschwindigkeitskonstante für die betrachtete Reaktion im Vergleich zur Reaktion von OH mit CH3CHO konnte anhand von Überlegungen zur Korrelation zwischen der C-H-Bindungsstärke und dem H-Abstraktionskanal erklärt werden. Im zweiten Teil dieser Arbeit wurde die Photochemie von Aceton (CH3C(O)CH3), Methylethylketon (C2H5C(O)CH3, MEK) und Acetylbromid (CH3C(O)Br) betrachtet. Für die Photolyse von Aceton (bei 248 nm und 266 nm), MEK (bei 248 nm) und Acetylbromid (bei 248 nm) wurden bei 298 ± 3 K druckabhängig zwischen 5 und 1600 Torr N2 Quantenausbeuten für die Methylbildung (Phi(CH3)) bestimmt. Nach gepulster Photolyse der betrachteten Moleküle wurden die transienten Absorptionssignale der Methylradikale bei 216,4 nm verfolgt. Die Quantenausbeuten wurden relativ zur Photolyse von Methyliodid (CH3I) unter gleichen Reaktionsbedingungen ermittelt. Die erhaltenen Quantenausbeuten für CH3-Radikale nehmen für die beiden Systeme Aceton / 248 nm (Phi(CH3, Aceton) = 1,42 – 0,99) und MEK / 248 nm (Phi(CH3, MEK) = 0,45 – 0,19) druckabhängig zu hohen Drücken ab. Die Druckabhängigkeit von Phi(CH3) wird auf die Konkurrenz zwischen Stoßrelaxation und Dissoziation der schwingungsangeregten Acetylradikale (CH3CO#) zurückgeführt. Für das System Aceton / 266 nm wird keine Druckabhängigkeit von Phi(CH3) = 0,93 ± 0,1 beobachtet. Dies wird damit erklärt, dass CH3CO# nicht genügend Energie besitzt, um die Barriere zur Dissoziation zu überschreiten. Bei der Photolyse von Acetylbromid bei 248 nm wird druckunabhängig Phi(CH3) = 0,92 ± 0,10 bestimmt. In diesem System dissoziieren die schwingungsangeregten Acetylradikale bei allen Drücken vollständig. Bei 266 nm wurde die Gesamtquantenausbeute für die Photodissoziation von Aceton (Phi(diss, 266nm)) bestimmt. Die nach Photolyse erhaltenen Methyl - und Acetylradikale wurden nach Titration mit Br2 durch die Resonanzfluoreszenz der Bromatome detektiert. Phi(diss, 266nm) wurde mit 0,92 ± 0,07 bestimmt.
Resumo:
During this thesis a new telemetric recording system has been developed allowing ECoG/EEG recordings in freely behaving rodents (Lapray et al., 2008; Lapray et al., in press). This unit has been shown to not generate any discomfort in the implanted animals and to allow recordings in a wide range of environments. In the second part of this work the developed technique has been used to investigate what cortical activity was related to the process of novelty detection in rats’ barrel cortex. We showed that the detection of a novel object is accompanied in the barrel cortex by a transient burst of activity in the γ frequency range (40-47 Hz) around 200 ms after the whiskers contact with the object (Lapray et al., accepted). This activity was associated to a decrease in the lower range of γ frequencies (30-37 Hz). This network activity may represent the optimal oscillatory pattern for the propagation and storage of new information in memory related structures. The frequency as well as the timing of appearance correspond well with other studies concerning novelty detection related burst of activity in other sensory systems (Barcelo et al., 2006; Haenschel et al., 2000; Ranganath & Rainer, 2003). Here, the burst of activity is well suited to induce plastic and long-lasting modifications in neuronal circuits (Harris et al., 2003). The debate is still open whether synchronised activity in the brain is a part of information processing or an epiphenomenon (Shadlen & Movshon, 1999; Singer, 1999). The present work provides further evidence that neuronal network activity in the γ frequency range plays an important role in the neocortical processing of sensory stimuli and in higher cognitive functions.
Resumo:
Phononische Kristalle sind strukturierte Materialien mit sich periodisch ändernden elastischen Moduln auf der Wellenlängenskala. Die Interaktion zwischen Schallwellen und periodischer Struktur erzeugt interessante Interferenzphänomene, und phononische Kristalle erschließen neue Funktionalitäten, die in unstrukturierter Materie unzugänglich sind. Hypersonische phononische Kristalle im Speziellen, die bei GHz Frequenzen arbeiten, haben Periodizitäten in der Größenordnung der Wellenlänge sichtbaren Lichts und zeigen daher die Wege auf, gleichzeitig Licht- und Schallausbreitung und -lokalisation zu kontrollieren, und dadurch die Realisierung neuartiger akusto-optischer Anordnungen. Bisher bekannte hypersonische phononische Kristalle basieren auf thermoplastischen Polymeren oder Epoxiden und haben nur eingeschränkte thermische und mechanische Stabilität und mechanischen Kontrast. Phononische Kristalle, die aus mit Flüssigkeit gefüllten zylindrischen Kanälen in harter Matrix bestehen, zeigen einen sehr hohen elastischen Kontrast und sind bislang noch unerforscht. In dieser Dissertation wird die experimentelle Untersuchung zweidimensionaler hypersonischer phononischer Kristalle mit hexagonaler Anordnung zylindrischer Nanoporen basierend auf der Selbstorganisation anodischen Aluminiumoxids (AAO) beschrieben. Dazu wird die Technik der hochauflösenden inelastischen Brillouin Lichtstreuung (BLS) verwendet. AAO ist ein vielsetiges Modellsystem für die Untersuchung reicher phononischer Phänomene im GHz-Bereich, die eng mit den sich in den Nanoporen befindlichen Flüssigkeiten und deren Interaktion mit der Porenwand verknüpft sind. Gerichteter Fluss elastischer Energie parallel und orthogonal zu der Kanalachse, Lokalisierung von Phononen und Beeinflussung der phononischen Bandstruktur bei gleichzeitig präziser Kontrolle des Volumenbruchs der Kanäle (Porosität) werden erörtert. Außerdem ermöglicht die thermische Stabilität von AAO ein temperaturabhängiges Schalten phononischer Eigenschaften infolge temperaturinduzierter Phasenübergänge in den Nanoporen. In monokristallinen zweidimensionalen phononischen AAO Kristallen unterscheiden sich die Dispersionsrelationen empfindlich entlang zweier hoch symmetrischer Richtungen in der Brillouinzone, abhängig davon, ob die Poren leer oder gefüllt sind. Alle experimentellen Dispersionsrelationen werden unter Zuhilfenahme theoretische Ergebnisse durch finite Elemente Analyse (FDTD) gedeutet. Die Zuordnung der Verschiebungsfelder der elastischen Wellen erklärt die Natur aller phononischen Moden.
A new double laser pulse pumping scheme for transient collisionally excited plasma soft X-ray lasers
Resumo:
Within this thesis a new double laser pulse pumping scheme for plasma-based, transient collisionally excited soft x-ray lasers (SXRL) was developed, characterized and utilized for applications. SXRL operations from ~50 up to ~200 electron volt were demonstrated applying this concept. As a central technical tool, a special Mach-Zehnder interferometer in the chirped pulse amplification (CPA) laser front-end was developed for the generation of fully controllable double-pulses to optimally pump SXRLs.rnThis Mach-Zehnder device is fully controllable and enables the creation of two CPA pulses of different pulse duration and variable energy balance with an adjustable time delay. Besides the SXRL pumping, the double-pulse configuration was applied to determine the B-integral in the CPA laser system by amplifying short pulse replica in the system, followed by an analysis in the time domain. The measurement of B-integral values in the 0.1 to 1.5 radian range, only limited by the reachable laser parameters, proved to be a promising tool to characterize nonlinear effects in the CPA laser systems.rnContributing to the issue of SXRL pumping, the double-pulse was configured to optimally produce the gain medium of the SXRL amplification. The focusing geometry of the two collinear pulses under the same grazing incidence angle on the target, significantly improved the generation of the active plasma medium. On one hand the effect was induced by the intrinsically guaranteed exact overlap of the two pulses on the target, and on the other hand by the grazing incidence pre-pulse plasma generation, which allows for a SXRL operation at higher electron densities, enabling higher gain in longer wavelength SXRLs and higher efficiency at shorter wavelength SXRLs. The observation of gain enhancement was confirmed by plasma hydrodynamic simulations.rnThe first introduction of double short-pulse single-beam grazing incidence pumping for SXRL pumping below 20 nanometer at the laser facility PHELIX in Darmstadt (Germany), resulted in a reliable operation of a nickel-like palladium SXRL at 14.7 nanometer with a pump energy threshold strongly reduced to less than 500 millijoule. With the adaptation of the concept, namely double-pulse single-beam grazing incidence pumping (DGRIP) and the transfer of this technology to the laser facility LASERIX in Palaiseau (France), improved efficiency and stability of table-top high-repetition soft x-ray lasers in the wavelength region below 20 nanometer was demonstrated. With a total pump laser energy below 1 joule the target, 2 mircojoule of nickel-like molybdenum soft x-ray laser emission at 18.9 nanometer was obtained at 10 hertz repetition rate, proving the attractiveness for high average power operation. An easy and rapid alignment procedure fulfilled the requirements for a sophisticated installation, and the highly stable output satisfied the need for a reliable strong SXRL source. The qualities of the DGRIP scheme were confirmed in an irradiation operation on user samples with over 50.000 shots corresponding to a deposited energy of ~ 50 millijoule.rnThe generation of double-pulses with high energies up to ~120 joule enabled the transfer to shorter wavelength SXRL operation at the laser facility PHELIX. The application of DGRIP proved to be a simple and efficient method for the generation of soft x-ray lasers below 10 nanometer. Nickel-like samarium soft x-ray lasing at 7.3 nanometer was achieved at a low total pump energy threshold of 36 joule, which confirmed the suitability of the applied pumping scheme. A reliable and stable SXRL operation was demonstrated, due to the single-beam pumping geometry despite the large optical apertures. The soft x-ray lasing of nickel-like samarium was an important milestone for the feasibility of applying the pumping scheme also for higher pumping pulse energies, which are necessary to obtain soft x-ray laser wavelengths in the water window. The reduction of the total pump energy below 40 joule for 7.3 nanometer short wavelength lasing now fulfilled the requirement for the installation at the high-repetition rate operation laser facility LASERIX.rn
Resumo:
Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.
Resumo:
Collinear laser spectroscopy has been used as a tool for nuclear physics for more than 30 years. The unique possibility to extract nuclear properties like spins, radii and nuclear moments in a model-independent manner leads to important physics results to test the predictive power of existing nuclear models. rnThis work presents the construction and the commissioning of a new collinear laser spectroscopy experiment TRIGA-LASER as a part of the TRIGA-SPEC facility at the TRIGA research reactor at the University of Mainz. The goal of the experiment is to study the nuclear structure of radioactive isotopes which will be produced by neutron-induced fission near the reactor core and transported to an ion source by a gas jet system. rnThe versatility of the collinear laser spectroscopy technique will be exploited in the second part of this thesis. The nuclear spin and the magnetic moment of the neutron-deficient isotope Mg-21 will be presented, which were measured by the detection of the beta-decay asymmetry induced by nuclear polarization after optical pumping. A combination of this detection method with the classical fluorescence detection is then used to determine the isotope shifts of the neutron-rich magnesium isotopes from Mg-24 through Mg-32 to study the transition to the ''island of inversion''.
Resumo:
Rapid and sensitive detection of chemical and biological analytes becomes increasingly important in areas such as medical diagnostics, food control and environmental monitoring. Optical biosensors based on surface plasmon resonance (SPR) and optical waveguide spectroscopy have been extensively pushed forward in these fields. In this study, we combine SPR, surface plasmon-enhanced fluorescence spectroscopy (SPFS) and optical waveguide spectroscopy with hydrogel thin film for highly sensitive detection of molecular analytes.rnrnA novel biosensor based on SPFS which was advanced through the excitation of long range surface plasmons (LRSPs) is reported in this study. LRSPs are special surface plasmon waves propagating along thin metal films with orders of magnitude higher electromagnetic field intensity and lower damping than conventional SPs. Therefore, their excitation on the sensor surface provides further increased fluorescence signal. An inhibition immunoassay based on LRSP-enhanced fluorescence spectroscopy (LRSP-FS) was developed for the detection of aflatoxin M1 (AFM1) in milk. The biosensor allowed for the detection of AFM1 in milk at concentrations as low as 0.6 pg mL-1, which is about two orders of magnitude lower than the maximum AFM1 residue level in milk stipulated by the European Commission legislation.rnrnIn addition, LRSPs probe the medium adjacent to the metallic surface with more extended evanescent field than regular SPs. Therefore, three-dimensional binding matrices with up to micrometer thickness have been proposed for the immobilization of biomolecular recognition elements with large surface density that allows to exploit the whole evanescent field of LRSP. A photocrosslinkable carboxymethyl dextran (PCDM) hydrogel thin film is used as a binding matrix, and it is applied for the detection of free prostate specific antigen (f-PSA) based on the LRSP-FS and sandwich immunoassay. We show that this approach allows for the detection of f-PSA at low femto-molar range, which is approximately four orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.rnrnHowever, a three dimensional hydrogel binding matrix with micrometer thickness can also serve as an optical waveguide. Based on the measurement of binding-induced refractive index changes, a hydrogel optical waveguide spectroscopy (HOWS) is reported for a label-free biosensor. This biosensor is implemented by using a SPR optical setup in which a carboxylated poly(N-isoproprylacrylamide) (PNIPAAm) hydrogel film is attached on a metallic surface and modified by protein catcher molecules. Compared to regular SPR biosensor with thiol self-assembled monolayer (SAM), HOWS provides an order of magnitude improved resolution in the refractive index measurements and enlarged binding capacity owing to its low damping and large swelling ratio, respectively. A model immunoassay experiment revealed that HOWS allowed detection of IgG molecules with a 10 pM limit of detection (LOD) that was five-fold lower than that achieved for SPR with thiol SAM. For the high capacity hydrogel matrix, the affinity binding was mass transport limited.rnrnThe mass transport of target molecules to the sensor surface can play as critical a role as the chemical reaction itself. In order to overcome the diffusion-limited mass transfer, magnetic iron oxide nanoparticles were employed. The magnetic nanoparticles (MNPs) can serve both as labels providing enhancement of the refractive index changes, and “vehicles” for rapidly delivering the analytes from sample solution to an SPR sensor surface with a gradient magnetic field. A model sandwich assay for the detection of β human chorionic gonadotropin (βhCG) has been utilized on a gold sensor surface with metallic diffraction grating structure supporting the excitation of SPs. Various detection formats including a) direct detection, b) sandwich assay, c) MNPs immunoassay without and d) with applied magnetic field were compared. The results show that the highly-sensitive MNPs immunoassay improves the LOD on the detection of βhCG by a factor of 5 orders of magnitude with respect to the direct detection.rn
Resumo:
Heusler intermetallics Mn$_{2}Y$Ga and $X_{2}$MnGa ($X,Y$=Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials and design future ones.rnrnSynchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specific information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange.rnrnFundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. rnrnChapters include an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of $X_2$MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn$_{2}Y$Ga to the logical Mn$_3$Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a “Think Tank” for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co$_2$FeSi (Appendix B).
Resumo:
Der Fokus dieser Arbeit liegt in dem Design, der Synthese und der Charakterisierung neuartiger photosensitiver Mikrogele und Nanopartikel als potentielle Materialien für Beladungs- und Freisetzungsanwendungen. Zur Realisierung dieses Konzepts wurden verschiedene Ansätze untersucht.Es wurden neuartige niedermolekulare lichtspaltbare Vernetzermoleküle auf der Basis von o-Nitrobenzylderivaten synthetisiert, charakterisiert und zur Herstellung von photosensitiven PMMA und PHEMA Mikrogelen verwendet. Diese sind unter Bestrahlung in organischen Lösungsmitteln quellbar und zersetzbar. Durch die Einführung anionischer MAA Gruppen in solche PHEMA Mikrogele wurde dieses Konzept auf doppelt stimuliresponsive p(HEMA-co-MAA) Mikrogele erweitert. Hierbei wurde ein pH-abhängiges Quellbarkeitsprofil mit der lichtinduzierten Netzwerkspaltung in wässrigen Medien kombiniert. Diese duale Sensitivität zu zwei zueinander orthogonalen Reizen stellt ein vielversprechendes Konzept zur Kombination einer pH-abhängigen Beladung mit einer lichtinduzierten Freisetzung von funktionellen Substanzen dar. Desweiteren wurden PAAm Mikrogele entwickelt, welche sowohl eine Sensitivität gegenüber Enzymen als auch Licht aufweisen. Dieses Verhalten wurde durch die Verwendung von (meth-)acrylatfunktionalisierten Dextranen als polymere Vernetzungsmoleküle erreicht. Das entsprechende stimuliresponsive Profil basiert auf der enzymatischen Zersetzbarkeit der Polysaccharid-Hauptkette und der Anbindung der polymerisierbaren Vinyleinheiten an diese über photospaltbare Gruppen. Die gute Wasserlöslichkeit der Vernetzermoleküle stellt einen vielversprechenden Ansatz zur Beladung solcher Mikrogele mit funktionellen hydrophilen Substanzen bereits während der Partikelsynthese dar. Ein weiteres Konzept zur Beladung von Mikrogelen basiert auf der Verwendung von photolabilen Wirkstoff-Mikrogel Konjugaten. In einem ersten Schritt zur Realisierung solch eines Ansatzes wurde ein neuartiges Monomer entwickelt. Hierbei wurde Doxorubicin über eine lichtspaltbare Gruppe an eine polymerisierbare Methacrylatgruppe angebunden. Für die Freisetzung hydrophober Substanzen in wässrigen Medien wurden polymere Photolack-Nanopartikel entwickelt, welche sich unter Bestrahlung in Wasser zersetzen. Die lichtinduzierte Änderung der Hydrophobizität des Polymers ermöglichte die Freisetzung von Nilrot durch das Auflösen der partikulären Struktur. Ein interessanter Ansatz zur Verhinderung einer unkontrollierten Freisetzung funktioneller Substanzen aus Mikrogelen ist die Einführung einer stimuliresponsiven Schale. In diesem Kontext wurden Untersuchungen zur Bildung von nicht-stimulisensitiven Schalen um vorgefertigte Mikrogelkerne und zur Synthese von Hydrogelkernen in vorgefertigten polymeren Schalen (Nanokapseln) durchgeführt.
Resumo:
Plasmonic nanoparticles are great candidates for sensing applications with optical read-out. Plasmon sensing is based on the interaction of the nanoparticle with electromagnetic waves where the particle scatters light at its resonance wavelength. This wavelength depends on several intrinsic factors like material, shape and size of the nanoparticle as well as extrinsic factors like the refractive index of the surrounding medium. The latter allows the nanoparticle to be used as a sensor; changes in the proximate environment can be directly monitored by the wavelength of the emitted light. Due to their minuscule size and high sensitivity this allows individual nanoparticles to report on changes in particle coverage.rnrnTo use this single particle plasmon sensor for future sensing applications it has to meet the demand for detection of incidents on the single molecule level, such as single molecule sensing or even the detection of conformational changes of a single molecule. Therefore, time resolution and sensitivity have to be enhanced as today’s measurement methods for signal read-out are too slow and not sensitive enough to resolve these processes. This thesis presents a new experimental setup, the 'Plasmon Fluctuation Setup', that leads to tremendous improvements in time resolution and sensitivity. This is achieved by implementation of a stronger light source and a more sensitive detector. The new setup has a time resolution in the microsecond regime, an advancement of 4-6 orders of magnitude to previous setups. Its resonance wavelength stability of 0.03 nm, measured with an exposure time of 10 ms, is an improvement of a factor of 20 even though the exposure time is 3000 times shorter than in previous reports. Thus, previously unresolvable wavelength changes of the plasmon sensor induced by minor local environmental alteration can be monitored with extremely high temporal resolution.rnrnUsing the 'Plasmon Fluctuation Setup', I can resolve adsorption events of single unlabeled proteins on an individual nanorod. Additionally, I monitored the dynamic evolution of a single protein binding event on a millisecond time scale. This feasibility is of high interest as the role of certain domains in the protein can be probed by a study of modified analytes without the need for labels possibly introducing conformational or characteristic changes to the target. The technique also resolves equilibrium fluctuations in the coverage, opening a window into observing Brownian dynamics of unlabeled macromolecules. rnrnA further topic addressed in this thesis is the usability of the nanoruler, two nanospheres connected with a spacer molecule, as a stiffness sensor for the interparticle linker under strong illumination. Here, I discover a light induced collapse of the nanoruler. Furthermore, I exploit the sensing volume of a fixed nanorod to study unlabeled analytes diffusing around the nanorod at concentrations that are too high for fluorescence correlation spectroscopy but realistic for biological systems. Additionally, local pH sensing with nanoparticles is achieved.
Resumo:
The adsorption of particles and surfactants at water-oil interfaces has attracted continuous attention because of its emulsion stabilizing effect and the possibility to form two-dimensional materials. Herein, I studied the interfacial diffusion of single molecules and nanoparticles at water-oil interfaces using fluorescence correlation spectroscopy. rnrnFluorescence correlation spectroscopy (FCS) is a promising technique to study diffusion of fluorescent tracers in diverse conditions. This technique monitors and analyzes the fluorescence fluctuation caused by single fluorescent tracers coming in and out of a diffraction-limited observation volume “one at a time”. Thus, this technique allows a combination of high precision, high spatial resolution and low tracer concentration. rnrnIn chapter 1, I discussed some controversial questions regarding the properties of water-hydrophobic interfaces and also introduced the current progress on the stability and dynamic of single nanoparticles at water-oil interfaces. The materials and setups I used in this thesis were summarized in chapter 2. rnrnIn chapter 3, I presented a new strategy to study the properties of water-oil interfaces. The two-dimensional diffusion of isolated molecular tracers at water/n-alkane interfaces was measured using fluorescence correlation spectroscopy. The diffusion coefficients of larger tracers with a hydrodynamic radius of 4.0 nm agreed well with the values calculated from the macroscopic viscosities of the two bulk phases. However, for small molecule tracers with hydrodynamic radii of only 1.0 and 0.6 nm, notable deviations were observed, indicating the existence of an interfacial region with a reduced effective viscosity. rnrnIn chapter 4, the interfacial diffusion of nanoparticles at water-oil interfaces was investigated using FCS. In stark contrast to the interfacial diffusion of molecular tracers, that of nanoparticles at any conditions is slower than the values calculated in accordance to the surrounding viscosity. The diffusion of nanoparticles at water-oil interfaces depended on the interfacial tension of liquid-liquid interfaces, the surface properties of nanoparticles, the particle sizes and the viscosities of surrounding liquid phases. In addition, the interfacial diffusion of nanoparticles with Janus motif is even slower than that of their symmetric counterparts. Based on the experimental results I obtained, I drew some possibilities to describe the origin of nanoparticle slowdown at water-oil interfaces.
Resumo:
In der vorliegenden Arbeit werden Experimente beschrieben, die zu einem vertieften Verständnis fundamentaler Prozesse bei der elektrochemischen Herstellung von Dünnschichten, sog. Targets, für kernphysikalische und -chemische Studien führten. Targets wurden mittels 'Molecular Plating' (MP) hergestellt, indem eine Elektrodeposition aus organischem Medium in der Regel bei konstantem Strom in Zwei-Elektroden-Zellen. Die Resultate erlaubten, optimierte Herstellungs-bedingungen zu ermitteln, welche die Produktion deutlich verbesserter Targets erlaubten. MP bei konstantem Strom ist ein massentransportkontrollierter Prozess. Der angelegte Strom wird durch einen konstanten Fluss elektroaktiver Spezies zur Kathode – auf der die Schicht wächst – und Anode aufrechterhalten. Die Untersuchungen zeigten, dass das Zellenpotential des Elektrodepositionsystems immer durch den Ohm'schen Spannungsabfall auf Grund des Widerstandes der verwendeten Lösung dominiert wurde. Dies erlaubte die Herleitung einer Beziehung zwischen dem Zellenpotential und der Konzentration der elektroaktiven Spezies. Die Beziehung erlaubt die Erklärung des gemessenen zeitlichen Verlaufs des Zellenpotentials während der Abscheidung als Funktion der Elektrolytkonzentration. Dies dient als Basis, auf der nun ein umfassenderes Bild der Prozesse, die für die charakteristischen Minima im Potentialverlauf einer Abscheidung verantwortlich sind, gewonnen werden kann. Es konnte gezeigt werden, dass die Minima mit der fast vollständigen Entfernung (durch Abscheidung) der aus einem gelösten Salz erzeugten Nd-Ionen korrespondieren. Die abgeschiedene Spezies wurde als Nd3+ identifiziert, vermutlich als Carboxylat, Oxid oder Hydroxid, was auf Grund der hohen negative Werte des Standardredoxpotentials der Lanthanide verständlich erscheint. Von den vorliegenden elektroaktiven Spezies tragen die Nd3+ Ionen nur zu knapp 20% zum Gesamtstrom bei. Durch Elektrolyse tragen auch die Lösungsmittelkomponenten zu diese Strom bei. Die Gegenwart von elektrolysiertem Lösungsmittel wurde in Analysen der Dünnschichten bestätigt. Diese waren immer mit chemi- und physisorbierten Lösungsmittelmolekülen bedeckt. Die Analyse der Dünnschichten zeigte, dass die Oberflächen von einem furchenartiges Netz durchzogen waren, und dass diese während des Trocknen der Schichten nach dem MP entstanden. Ob die Schichten an Luft oder in inerter Atmosphäre trockneten, hatte keinen Einfluss. Es wurden Experimente mit mehreren Lösungsmitteln durchgeführt, die sich deutlich in ihren physikalischen Eigenschaften, v.a. dem Siedepunkt, unterschieden. Furchenfreie Dünnschichten konnten insbesondere bei MP in N,N-dimethylformamide (DMF) erzeugt werden. Die Verwendung von DMF in Kombination mit einer Abscheidung auf sehr glatten Substraten erlaubte die Produktion von sehr homogenen, glatten und defektfreien Schichten. Diese waren vermutlich geringeren inneren Spannungen während des Trocknens ausgesetzt, als Schichten auf raueren Substraten oder solche, die aus flüchtigeren Lösungsmitteln hergestellt wurden. Die Oberflächenrauigkeit des Substrats und das gewählte Lösungsmittel wurden so als Schlüsselfaktoren für die Produktion hochqualitativer Schichten identifiziert. Es konnte gezeigt werden, dass mit MP eine sehr effiziente Methode zur Herstellung homogener Schichten mit exzellenter Ausbeute ist. In weiteren Experimenten mit dem primordialen Alpha-Emitter 147Sm als Modellisotop wurde die Eignung solcher Schichten als Alpha-Quelle untersucht. Sowohl die Energieauflösung als auch der Anteil der Alpha-Teilchen, die den Detektor erreichten, waren von den Quelleneigenschaften abhängig. Die Effekte wurden verschiedenen Variablen der Dünnschicht zugeordnet, welche die Alpha-Spektren beeinflussten. Dominant war die Wahl des Lösungsmittels und die Rauigkeit des Substrats. Dies beeinflusste Schichtdicke und -morphologie sowie die Art des Schichtwachstums und veränderte die Detektionseffizienz in Alpha-Messungen bis zu 15%. Nur homogene, ebene Schichten, die aus DMF auf glatten Substraten abgeschieden wurden, eignen sich optimal als Alpha-Quelle. Die gewonnenen Ergebnisse erlauben die optimierte Herstellung nuklearer Targets durch MP. Künftige Anwendungen beinhalten insbesondere die Herstellung von Targets für neutroneninduzierte Spaltexperimente und untergrundarmeAlpha-Messungen sehr kleiner Aktivitäten.
Resumo:
Es wurde untersucht, wie sich das Substitutionsmuster organischer Peroxyradikale (RO2) auf die Ratenkonstante k1 und die Verzweigungsverhältnisse α, β und γ der Reaktionen von RO2 mit HO2 auswirkt. Die Effekte der Deuterierung von HO2 wurden ebenfalls studiert. Für zwei RO2 wurde zusätzlich das UV-Absorptionsspektrum bestimmt.rnrn αrnRO2 + HO2 → RO + OH + O2 R1arnrn βrn → RO2H + O2 R1brnrn γrn → ROH + O3 R1crnrnIn dieser Arbeit wurde ein neues Experiment aufgebaut. Für die direkte und zeitaufgelöste Messung der OH-Konzentration wurde das Verfahren der Laser-induzierten Fluoreszenz angewendet. Die Radikalerzeugung erfolgte mittels gepulster Laserphotolyse, wodurch unerwünschte Nebenreaktionen weitgehend unterdrückt werden konnten. Mittels transienter Absorptionsspektroskopie konnten die Menge der photolytisch erzeugten Radikale bestimmt und die Ozonbildung über R1c quantifiziert werden. Für die Auswertung wurden kinetische Modelle numerisch an die Messdaten angepasst. Um die experimentellen Unsicherheiten abzuschätzen, wurde ein Monte-Carlo-Ansatz gewählt.rnrnk1 und α reagieren sehr empfindlich auf Veränderungen des RO2-Substitutionsmusters. Während sich eine OH-Bildung für das unsubstituierte C2H5O2 (EtP) mit α EtP ≤ 5 % nicht nachweisen lässt, stellt R1a bei den α-Oxo-substituierten H3CC(O)O2 (AcP) und HOCH2C(O)O2 (HAP) mit α AcP = (63 ± 11) % bzw. α HAP = (69 ± 12) % den Hauptkanal dar. Wie die mit α HEP = (10 ± 4) % geringfügige OH-Bildung bei HOC2H4O2 (HEP) zeigt, nimmt die OH-Gruppe in β-Stellung weniger Einfluss auf den Wert von α als die Oxogruppe in α-Stellung. Bei der Erzeugung α-Oxo-substituierter RO2 kann ebenfalls OH entstehen (R+O2→RO2/OH). Die Druckabhängigkeit dieser OH-Quelle wurde mit einem innovativen Ansatz bestimmt. Mit γ AcP = (15+5-6) % bzw. γ HAP = (10+2-3) % lässt sich für die Reaktionen der α-Oxo-substituierten RO2 eine erhebliche Ozonbildung nachweisen. Durch die Einführung der α-Oxogruppe steigt k1 jeweils um 1,3 • 10-11 cm3s-1 an, der Effekt der β-Hydroxygruppe ist halb so groß (k1 AcP = (2,0 ± 0,4) • 10-11 cm3s-1, k1 HAP = (2,6 ± 0,4) • 10-11 cm3s-1). Das Verzweigungsverhältnis α steigt weiter, wenn das HO2 deuteriert wird (α AcP,iso = (80 ± 14) %, k1 AcP,iso = (2,1 ± 0,4) • 10-11 cm3s-1). Vergleiche mit älteren Studien zeigen, dass die OH-Bildung über R1a bislang deutlich unterschätzt worden ist. Die möglichen Ursachen für die Unterschiede zwischen den Studien werden ebenso diskutiert wie die Hintergründe der beobachteten Substituenteneffekte.
Resumo:
This thesis deals with the investigation of exciton and charge dynamics in hybrid solar cells by time-resolved optical spectroscopy. Quasi-steady-state and transient absorption spectroscopy, as well as time-resolved photoluminescence spectroscopy, were employed to study charge generation and recombination in solid-state organic dye-sensitized solar cells, where the commonly used liquid electrolyte is replaced by an organic solid hole transporter, namely 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD), and polymer-metal oxide bulk heterojunction solar cells, where the commonly used fullerene acceptor [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is replaced by zinc oxide (ZnO) nanoparticles. By correlating the spectroscopic results with the photovoltaic performance, efficiency-limiting processes and processes leading to photocurrent generation in the investigated systems are revealed. rnIt is shown that the charge generation from several all-organic donor-π-bridge-acceptor dyes, specifically perylene monoimide derivatives, employed in solid-state dye-sensitized solar cells, is strongly dependent on the presence of a commonly used additive lithium bis(trifluoromethanesulphonyl)imide salt (Li-TFSI) at the interface. rnMoreover, it is shown that charges can not only be generated by electron injection from the excited dye into the TiO2 acceptor and subsequent regeneration of the dye cation by the hole transporter, but also by an alternative mechanism, called preceding hole transfer (or reductive quenching). Here, the excited dye is first reduced by the hole transporter and the thereby formed anion subsequently injects an electron into the titania. This additional charge generation process, which is only possible for solid hole transporters, helps to overcome injection problems. rnHowever, a severe disadvantage of solid-state dye-sensitized solar cells is re-vealed by monitoring the transient Stark effect on dye molecules at the inter-face induced by the electric field between electrons and holes. The attraction between the negative image charge present in TiO2, which is induced by the positive charge carrier in the hole transporter due to the dielectric contrast between the organic spiro-MeOTAD and inorganic titania, is sufficient to at-tract the hole back to the interface, thereby increasing recombination and suppressing the extraction of free charges.rnBy investigating the effect of different dye structures and physical properties on charge generation and recombination, design rules and guidelines for the further advancement of solid-state dye-sensitized solar cells are proposed.rnFinally, a spectroscopic study on polymer:ZnO bulk heterojunction hybrid solar cells, employing different surfactants attached to the metal oxide nanoparticles, was performed to understand the effect of surfactants upon photovoltaic behavior. By applying a parallel pool analysis on the transient absorption data, it is shown that suppressing fast recombination while simultaneously maintaining the exciton splitting efficiency by the right choice of surfactants leads to better photovoltaic performances. Suppressing the fast recombination completely, whilst maintaining the exciton splitting, could lead to a doubling of the power conversion efficiency of this type of solar cell.
Resumo:
Phononic crystals, capable to block or direct the propagation of elastic/acoustic waves, have attracted increasing interdisciplinary interest across condensed matter physics and materials science. As of today, no generalized full description of elastic wave propagation in phononic structures is available, mainly due to the large number of variables determining the band diagram. Therefore, this thesis aims for a deeper understanding of the fundamental concepts governing wave propagation in mesoscopic structures by investigation of appropriate model systems. The phononic dispersion relation at hypersonic frequencies is directly investigated by the non-destructive technique of high-resolution spontaneous Brillouin light scattering (BLS) combined with computational methods. Due to the vector nature of the elastic wave propagation, we first studied the hypersonic band structure of hybrid superlattices. These 1D phononic crystals composed of alternating layers of hard and soft materials feature large Bragg gaps. BLS spectra are sensitive probes of the moduli, photo-elastic constants and structural parameters of the constituent components. Engineering of the band structure can be realized by introduction of defects. Here, cavity layers are employed to launch additional modes that modify the dispersion of the undisturbed superlattice, with extraordinary implications to the band gap region. Density of states calculations in conjunction with the associated deformation allow for unambiguous identication of surface and cavity modes, as well as their interaction with adjacent defects. Next, the role of local resonances in phononic systems is explored in 3D structures based on colloidal particles. In turbid media BLS records the particle vibration spectrum comprising resonant modes due to the spatial confinement of elastic energy. Here, the frequency and lineshapes of the particle eigenmodes are discussed as function of increased interaction and departure from spherical symmetry. The latter is realized by uniaxial stretching of polystyrene spheres, that can be aligned in an alternating electric field. The resulting spheroidal crystals clearly exhibit anisotropic phononic properties. Establishing reliable predictions of acoustic wave propagation, necessary to advance, e.g., optomechanics and phononic devices is the ultimate aim of this thesis.